This research employs micro-CT scanning technology to analyze the porosity,pore fractal dimension,and spatial variability of sandstone preheated to 600℃ and subsequently cooled in water at varying temperatures(20℃,6...This research employs micro-CT scanning technology to analyze the porosity,pore fractal dimension,and spatial variability of sandstone preheated to 600℃ and subsequently cooled in water at varying temperatures(20℃,60℃,100℃).The study investigates the mechanisms by which various factors influence thermal shock damage,focusing on the effects of cooling water temperature and the boiling phase transition.The objective is to develop a method for characterizing thermal shock damage that considers spatial variability.The findings indicate that thermal shock damage is limited to a shallow depth beneath the surface,with increased severity near the surface.The boiling phase transition significantly enhances the convective heat transfer coefficient,resulting in substantially higher thermal shock damage when cooled with 100℃ boiling water compared to 20℃ and 60℃ water.Furthermore,for the entire specimen,heating damage exceeds thermal shock damage,and the influence of thermal shock diminishes as specimen size increases.This study addresses the limitations of traditional methods for assessing thermal shock damage that disregard spatial variability and provides practical guidance for engineering projects to manage thermal shock damage more effectively.展开更多
Hot dry rock (HDR) geothermal energy, almost inexhaustible green energy, was first put forward in the 1970s. The development and testing of HDR geothermal energy are well reported in USA, Japan, UK, France and other...Hot dry rock (HDR) geothermal energy, almost inexhaustible green energy, was first put forward in the 1970s. The development and testing of HDR geothermal energy are well reported in USA, Japan, UK, France and other countries or regions. In this paper, the geological characters of Yangbajing basin were first analyzed, including the continental dynamic environments to form HDR geothermal fields in Tibet, the tectonic characteristics of south slope of Nyainqentanglha and Dangxiong-Yangbajing basin, and the in-situ stresses based on the investigations conducted, and then the site-specific mining scheme of HDR geothermal resources was proposed. For the potential development of HDR geothermal energy, a series of experiments were conducted on large-scale granite samples, 200 mm in diameter and 400 mm in length, at high temperature and high triaxial pressure for cutting fragmentation and borehole stability. For the borehole stability test, a hole of 40 mm in diameter and 400 mm in length was aforehand drilled in the prepared intact granite sample. The results indicate that the cutting velocity obviously increases with temperature when bit pressure is over a certain value, while the unit rock-breaking energy consumption decreases and the rock-breaking efficiency increases with temperature at the triaxial pressure of 100 MPa. The critical temperature and pressure that can result in intensive damage to granite are 400-500℃ and 100-125 MPa, respectively.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51874207)the Natural Science Foundation of Shanxi Province(Grant Nos.202303021211042 and 202303011222006).
文摘This research employs micro-CT scanning technology to analyze the porosity,pore fractal dimension,and spatial variability of sandstone preheated to 600℃ and subsequently cooled in water at varying temperatures(20℃,60℃,100℃).The study investigates the mechanisms by which various factors influence thermal shock damage,focusing on the effects of cooling water temperature and the boiling phase transition.The objective is to develop a method for characterizing thermal shock damage that considers spatial variability.The findings indicate that thermal shock damage is limited to a shallow depth beneath the surface,with increased severity near the surface.The boiling phase transition significantly enhances the convective heat transfer coefficient,resulting in substantially higher thermal shock damage when cooled with 100℃ boiling water compared to 20℃ and 60℃ water.Furthermore,for the entire specimen,heating damage exceeds thermal shock damage,and the influence of thermal shock diminishes as specimen size increases.This study addresses the limitations of traditional methods for assessing thermal shock damage that disregard spatial variability and provides practical guidance for engineering projects to manage thermal shock damage more effectively.
文摘Hot dry rock (HDR) geothermal energy, almost inexhaustible green energy, was first put forward in the 1970s. The development and testing of HDR geothermal energy are well reported in USA, Japan, UK, France and other countries or regions. In this paper, the geological characters of Yangbajing basin were first analyzed, including the continental dynamic environments to form HDR geothermal fields in Tibet, the tectonic characteristics of south slope of Nyainqentanglha and Dangxiong-Yangbajing basin, and the in-situ stresses based on the investigations conducted, and then the site-specific mining scheme of HDR geothermal resources was proposed. For the potential development of HDR geothermal energy, a series of experiments were conducted on large-scale granite samples, 200 mm in diameter and 400 mm in length, at high temperature and high triaxial pressure for cutting fragmentation and borehole stability. For the borehole stability test, a hole of 40 mm in diameter and 400 mm in length was aforehand drilled in the prepared intact granite sample. The results indicate that the cutting velocity obviously increases with temperature when bit pressure is over a certain value, while the unit rock-breaking energy consumption decreases and the rock-breaking efficiency increases with temperature at the triaxial pressure of 100 MPa. The critical temperature and pressure that can result in intensive damage to granite are 400-500℃ and 100-125 MPa, respectively.