CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@M...CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@MnO2 products grown on Ni foams were obtained through a facile hydrothermal method.The as-synthesized samples employed as electrodes deliver a specific capacitance of 2325.01 F g^-1 at 1 A g^-1.An assembled asymmetric supercapacitor using these products as positive electrodes shows a maximum energy density of 59.73 W h kg^-1 at 1000.09 W kg^-1.The prominent electrochemical performance of the as-prepared electrodes could be attributes to hierarchical structures.These findings suggest that hybrid structures might be potential alternatives for future flexible energy storage devices.展开更多
TiO_2 nanostructures with strong interfacial adhesion and diverse morphologies have been in-situ grown on Ti foil substrate through a multiple-step method based on conventional plasma electrolytic oxidation(PEO) techn...TiO_2 nanostructures with strong interfacial adhesion and diverse morphologies have been in-situ grown on Ti foil substrate through a multiple-step method based on conventional plasma electrolytic oxidation(PEO) technology, hydrothermal reaction and ion exchange process. The PEO process is critical to the formation of TiO_2 seeding layer for the nucleation of Na_2Ti_3O_7 and H_2Ti_3O_7 mediates that are strongly attached to the Ti foil. An ion exchange reaction can finally lead to the formation of H_2Ti_3O_7 nanostructures with diverse morphologies and the calcination process can turn the H_2Ti_3O_7 nanostructures into TiO_2 nanostructures with enhanced crystallinity. The morphology of the TiO_2 nanostructures including nanoparticles(NP), nanowhiskers(NWK), nanowires(NW) and nanosheets(NS) can be easily tailored by controlling the NaOH concentration and reaction time during hydrothermal process. The morphology, composition and optical properties of TiO_2 photocatalysts were analyzed using scanning electron microscope(SEM), X-ray diffraction(XRD), photoluminescence(PL) spectroscopy and UV–vis absorption spectrum. Photocatalytic tests indicate that the TiO_2 nanosheets calcined at 500?C show good crystallization and the best capability of decomposing organic pollutants. The decoration of Ag cocatalyst can further improve the photocatalytic performance of the TiO_2 nanosheets as a result of the enhanced charger separation efficiency. Cyclic photocatalytic test using TiO_2 nanostructures grown on Ti foil substrate demonstrates the superior stability in the photodegradation of organic pollutant, suggesting the promising potential of in-situ growth technology for industrial application.展开更多
In this study, we reported the in-situ fabrication of a series of Fe_(2)O_(3)/TiO_(2) monolithic catalysts on flexible Ti mesh via plasma electrolytic oxidation process, hydrothermal reaction and chemical bath deposit...In this study, we reported the in-situ fabrication of a series of Fe_(2)O_(3)/TiO_(2) monolithic catalysts on flexible Ti mesh via plasma electrolytic oxidation process, hydrothermal reaction and chemical bath deposition(CBD) method. The morphology tailoring of Fe_(2)O_(3) nanostructures finds that Fe2O3 nanosheets supported on TiO2 exhibit superior catalytic performance with a complete oxidation of CO at 260℃. The catalytic stability test indicates that the in-situ grown Fe_(2)O_(3)/TiO_(2) catalysts own outstanding performance for continuous CO oxidation due to the strong substrate adhesion without mass loss. The microstructures and interfaces of Fe_(2)O_(3)/TiO_(2) catalysts are well studied using series of characterization techniques. The in-situ preparation strategy of metal oxide catalysts in this work will open up more opportunities for the rational design of variety of monolithic catalysts used for CO oxidation, de-NO_(x), three-way catalysis and other related application in industry.展开更多
Highly efficient Co_(3)O_(4)/TiO_(2) monolithic catalysts with enhanced stability were in-situ grown on Ti mesh for CO oxidation,which could completely oxidize CO at 120℃.The comprehensive catalytic performance is co...Highly efficient Co_(3)O_(4)/TiO_(2) monolithic catalysts with enhanced stability were in-situ grown on Ti mesh for CO oxidation,which could completely oxidize CO at 120℃.The comprehensive catalytic performance is competitive to some noble metal catalysts and conventional Co_(3)O_(4) powder catalysts,which holds great potential toward industrial applications.Meanwhile,the in-situ synthesis strategy of Co_(3)O_(4)/TiO_(2) monolithic catalysts on flexible mesh substrate in this work can be extended to the development of a variety of oxide-based monolithic catalysts towards diverse catalysis applications.展开更多
Heterostructure and solid-solution semicon-ductor nanostructures comprised of two different bi-nary compounds represent new members in the family of nanomaterials and may exhibit unexpected properties,as well as the p...Heterostructure and solid-solution semicon-ductor nanostructures comprised of two different bi-nary compounds represent new members in the family of nanomaterials and may exhibit unexpected properties,as well as the potential application in diverse fields.^([1])For two elements or compounds,they can easily form a radial or axial heterostructure,or a core-shell heterostructure if they展开更多
Crystal defect engineering is widely used as an effective approach to regulate the optical and optoelectronic properties of semiconductor nanostructures.However,photogenerated electron-hole pair recombination centers ...Crystal defect engineering is widely used as an effective approach to regulate the optical and optoelectronic properties of semiconductor nanostructures.However,photogenerated electron-hole pair recombination centers caused by structural defects usually lead to the reduction of optoelectronic performance.In this work,a high-performance photodetector based on(GaN)_(1-x)(ZnO)_(x)solid solution nanowire with bicrystal structure is fabricated and it shows excellent photoresponse to ultraviolet and visible light.The highest responsivity of the photodetector is as high as 60,86 and 43 A/W under the irradiation of365 nm,532 nm and 650 nm,respectively.The corresponding response time is as fast as 170,320 and 160 ms.Such wide spectral responses can be attributed to various intermediate energy levels induced by the introduction of various structural defects and dopants in the solid solution nanowire.Moreover,the peculiar bicrystal boundary along the axial direction of the nanowire provides two parallel and fast transmission channels for photo-generated carriers,reducing the recombination of photo-generated carriers.Our findings provide a valued example using crystal defect engineering to broaden the photoresponse range and improve the photodetector performance and thus can be extended to other material systems for various optoelectronic applications.展开更多
With the birth of graphene with fasnicating properties,novel two-dimensional nanomaterials have obtained considerable developments in the last decade.Among them,BN nanosheets have been intensively investigated because...With the birth of graphene with fasnicating properties,novel two-dimensional nanomaterials have obtained considerable developments in the last decade.Among them,BN nanosheets have been intensively investigated because of their large elastic modulus,high melting-point,superb thermal conductivity and large direct bandgap,which can be used in ultraviolet-light emitter,展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No 30919011410)。
文摘CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@MnO2 products grown on Ni foams were obtained through a facile hydrothermal method.The as-synthesized samples employed as electrodes deliver a specific capacitance of 2325.01 F g^-1 at 1 A g^-1.An assembled asymmetric supercapacitor using these products as positive electrodes shows a maximum energy density of 59.73 W h kg^-1 at 1000.09 W kg^-1.The prominent electrochemical performance of the as-prepared electrodes could be attributes to hierarchical structures.These findings suggest that hybrid structures might be potential alternatives for future flexible energy storage devices.
基金partially supported by the National Natural Science Foundation of China (Nos.51702326,51472047)the Knowledge Innovation Program of Institute of Metal Research,Chinese Academy of Sciences with grants No.Y2NCA111A1 and Y3NCA111A1+1 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences (Grant No.Y4NC711171)the Basic Science Innovation Program of Shenyang National Laboratory for Materials Science (Grant Nos.2017EP05 and 2017RP25)
文摘TiO_2 nanostructures with strong interfacial adhesion and diverse morphologies have been in-situ grown on Ti foil substrate through a multiple-step method based on conventional plasma electrolytic oxidation(PEO) technology, hydrothermal reaction and ion exchange process. The PEO process is critical to the formation of TiO_2 seeding layer for the nucleation of Na_2Ti_3O_7 and H_2Ti_3O_7 mediates that are strongly attached to the Ti foil. An ion exchange reaction can finally lead to the formation of H_2Ti_3O_7 nanostructures with diverse morphologies and the calcination process can turn the H_2Ti_3O_7 nanostructures into TiO_2 nanostructures with enhanced crystallinity. The morphology of the TiO_2 nanostructures including nanoparticles(NP), nanowhiskers(NWK), nanowires(NW) and nanosheets(NS) can be easily tailored by controlling the NaOH concentration and reaction time during hydrothermal process. The morphology, composition and optical properties of TiO_2 photocatalysts were analyzed using scanning electron microscope(SEM), X-ray diffraction(XRD), photoluminescence(PL) spectroscopy and UV–vis absorption spectrum. Photocatalytic tests indicate that the TiO_2 nanosheets calcined at 500?C show good crystallization and the best capability of decomposing organic pollutants. The decoration of Ag cocatalyst can further improve the photocatalytic performance of the TiO_2 nanosheets as a result of the enhanced charger separation efficiency. Cyclic photocatalytic test using TiO_2 nanostructures grown on Ti foil substrate demonstrates the superior stability in the photodegradation of organic pollutant, suggesting the promising potential of in-situ growth technology for industrial application.
基金the National Natural Science Foundation of China(No.51702326,51872296)the Joint Fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals(Grant No.18LHPY012)。
文摘In this study, we reported the in-situ fabrication of a series of Fe_(2)O_(3)/TiO_(2) monolithic catalysts on flexible Ti mesh via plasma electrolytic oxidation process, hydrothermal reaction and chemical bath deposition(CBD) method. The morphology tailoring of Fe_(2)O_(3) nanostructures finds that Fe2O3 nanosheets supported on TiO2 exhibit superior catalytic performance with a complete oxidation of CO at 260℃. The catalytic stability test indicates that the in-situ grown Fe_(2)O_(3)/TiO_(2) catalysts own outstanding performance for continuous CO oxidation due to the strong substrate adhesion without mass loss. The microstructures and interfaces of Fe_(2)O_(3)/TiO_(2) catalysts are well studied using series of characterization techniques. The in-situ preparation strategy of metal oxide catalysts in this work will open up more opportunities for the rational design of variety of monolithic catalysts used for CO oxidation, de-NO_(x), three-way catalysis and other related application in industry.
基金partially supported by the National Natural Science Foundation of China(No.51872296)the Joint Fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals(No.18LHPY012)。
文摘Highly efficient Co_(3)O_(4)/TiO_(2) monolithic catalysts with enhanced stability were in-situ grown on Ti mesh for CO oxidation,which could completely oxidize CO at 120℃.The comprehensive catalytic performance is competitive to some noble metal catalysts and conventional Co_(3)O_(4) powder catalysts,which holds great potential toward industrial applications.Meanwhile,the in-situ synthesis strategy of Co_(3)O_(4)/TiO_(2) monolithic catalysts on flexible mesh substrate in this work can be extended to the development of a variety of oxide-based monolithic catalysts towards diverse catalysis applications.
文摘Heterostructure and solid-solution semicon-ductor nanostructures comprised of two different bi-nary compounds represent new members in the family of nanomaterials and may exhibit unexpected properties,as well as the potential application in diverse fields.^([1])For two elements or compounds,they can easily form a radial or axial heterostructure,or a core-shell heterostructure if they
基金partially supported by the National Natural Science Foundation of China(Nos.51702326 and 51872296)the Liaoning Province Natural Science Foundation(No.2019-MS333)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2019197)the Shenyang National Laboratory for Materials Science(No.L2019F36)the Shenyang Planning Project of Science and Technology(No.18-013-0-52)Tomsk Polytechnic University Competitiveness Enhancement Program grant with project number TPU CEP NOC N.M.Kizhnera188/2020。
文摘Crystal defect engineering is widely used as an effective approach to regulate the optical and optoelectronic properties of semiconductor nanostructures.However,photogenerated electron-hole pair recombination centers caused by structural defects usually lead to the reduction of optoelectronic performance.In this work,a high-performance photodetector based on(GaN)_(1-x)(ZnO)_(x)solid solution nanowire with bicrystal structure is fabricated and it shows excellent photoresponse to ultraviolet and visible light.The highest responsivity of the photodetector is as high as 60,86 and 43 A/W under the irradiation of365 nm,532 nm and 650 nm,respectively.The corresponding response time is as fast as 170,320 and 160 ms.Such wide spectral responses can be attributed to various intermediate energy levels induced by the introduction of various structural defects and dopants in the solid solution nanowire.Moreover,the peculiar bicrystal boundary along the axial direction of the nanowire provides two parallel and fast transmission channels for photo-generated carriers,reducing the recombination of photo-generated carriers.Our findings provide a valued example using crystal defect engineering to broaden the photoresponse range and improve the photodetector performance and thus can be extended to other material systems for various optoelectronic applications.
文摘With the birth of graphene with fasnicating properties,novel two-dimensional nanomaterials have obtained considerable developments in the last decade.Among them,BN nanosheets have been intensively investigated because of their large elastic modulus,high melting-point,superb thermal conductivity and large direct bandgap,which can be used in ultraviolet-light emitter,