期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A novel Tb^(3+) and Eu^(3+) co-doped dual-emitting phosphate K_(3)SrBi(P_(2)O_(7))_(2) phosphor for application in FIR thermometers 被引量:3
1
作者 baochen wang Shifeng Sun +5 位作者 Zeqi Li Zongwang Li Weiwei Lin Chao Zeng Yan-gai Liu Ruiyu Mi 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期455-463,I0001,共10页
Rare earth co-doped phosphor for fluorescence intensity ratio(FIR) thermometer has gained increasing attention in recent years. Herein, the novel Tb^(3+)and Eu^(3+)co-doped K_(3)SrBi(P_(2)O_(7))_(2)(KSBP) phosphate ph... Rare earth co-doped phosphor for fluorescence intensity ratio(FIR) thermometer has gained increasing attention in recent years. Herein, the novel Tb^(3+)and Eu^(3+)co-doped K_(3)SrBi(P_(2)O_(7))_(2)(KSBP) phosphate phosphors were reported. The crystal structure of the title phosphor was determined using Rietveld refinement and proved to have a three-dimensional structure. The time-resolved spectroscopy reveals that there is almost no energy transfer between Tb^(3+)and Eu^(3+). More importantly, Tb^(3+)and Eu^(3+)emissions show different thermal quenching behaviors, which claims the potential of this material for application in optical thermometer. The FIR of the typical KSBP:0.02Tb^(3+),0.04Eu^(3+)sample demonstrates a polynomial relationship as a function of temperature and the absolute and relative sensitivity are0.025 K^(-1) and 0.59%/K, respectively. In general, our study reports a novel and potential KSBP:Tb^(3+),Eu^(3+)phosphate phosphor that is promising for use in high-sensitive FIR thermometers. 展开更多
关键词 PHOSPHOR THERMOMETER Fluorescence intensity ratio Thermal stability Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部