Nowadays,the COVID-19 virus disease is spreading rampantly.There are some testing tools and kits available for diagnosing the virus,but it is in a lim-ited count.To diagnose the presence of disease from radiological i...Nowadays,the COVID-19 virus disease is spreading rampantly.There are some testing tools and kits available for diagnosing the virus,but it is in a lim-ited count.To diagnose the presence of disease from radiological images,auto-mated COVID-19 diagnosis techniques are needed.The enhancement of AI(Artificial Intelligence)has been focused in previous research,which uses X-ray images for detecting COVID-19.The most common symptoms of COVID-19 are fever,dry cough and sore throat.These symptoms may lead to an increase in the rigorous type of pneumonia with a severe barrier.Since medical imaging is not suggested recently in Canada for critical COVID-19 diagnosis,computer-aided systems are implemented for the early identification of COVID-19,which aids in noticing the disease progression and thus decreases the death rate.Here,a deep learning-based automated method for the extraction of features and classi-fication is enhanced for the detection of COVID-19 from the images of computer tomography(CT).The suggested method functions on the basis of three main pro-cesses:data preprocessing,the extraction of features and classification.This approach integrates the union of deep features with the help of Inception 14 and VGG-16 models.At last,a classifier of Multi-scale Improved ResNet(MSI-ResNet)is developed to detect and classify the CT images into unique labels of class.With the support of available open-source COVID-CT datasets that consists of 760 CT pictures,the investigational validation of the suggested method is estimated.The experimental results reveal that the proposed approach offers greater performance with high specificity,accuracy and sensitivity.展开更多
Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primaril...Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primarily used to analyse the better software design quality,increase the reliability and reduced system software complexity.The complexity measurement of cohesion and coupling component to analyze the relationship between the component module.In this paper,proposed the component selection framework of Hexa-oval optimization algorithm for selecting the suitable components from the repository.It measures the interface density modules of coupling and cohesion in a modular software sys-tem.This cohesion measurement has been taken into two parameters for analyz-ing the result of complexity,with the help of low cohesion and high cohesion.In coupling measures between the component of inside parameters and outside parameters.Thefinal process of coupling and cohesion,the measured values were used for the average calculation of components parameter.This paper measures the complexity of direct and indirect interaction among the component as well as the proposed algorithm selecting the optimal component for the repository.The better result is observed for high cohesion and low coupling in compo-nent-based software engineering.展开更多
基金Supporting this research through Taif University Researchers Supporting Project number(TURSP-2020/231),Taif University,Taif,Saudi Arabia.
文摘Nowadays,the COVID-19 virus disease is spreading rampantly.There are some testing tools and kits available for diagnosing the virus,but it is in a lim-ited count.To diagnose the presence of disease from radiological images,auto-mated COVID-19 diagnosis techniques are needed.The enhancement of AI(Artificial Intelligence)has been focused in previous research,which uses X-ray images for detecting COVID-19.The most common symptoms of COVID-19 are fever,dry cough and sore throat.These symptoms may lead to an increase in the rigorous type of pneumonia with a severe barrier.Since medical imaging is not suggested recently in Canada for critical COVID-19 diagnosis,computer-aided systems are implemented for the early identification of COVID-19,which aids in noticing the disease progression and thus decreases the death rate.Here,a deep learning-based automated method for the extraction of features and classi-fication is enhanced for the detection of COVID-19 from the images of computer tomography(CT).The suggested method functions on the basis of three main pro-cesses:data preprocessing,the extraction of features and classification.This approach integrates the union of deep features with the help of Inception 14 and VGG-16 models.At last,a classifier of Multi-scale Improved ResNet(MSI-ResNet)is developed to detect and classify the CT images into unique labels of class.With the support of available open-source COVID-CT datasets that consists of 760 CT pictures,the investigational validation of the suggested method is estimated.The experimental results reveal that the proposed approach offers greater performance with high specificity,accuracy and sensitivity.
基金We deeply acknowledge Taif University for Supporting this research through Taif University Researchers Supporting Project number(TURSP-2020/231),Taif University,Taif,Saudi Arabia.
文摘Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primarily used to analyse the better software design quality,increase the reliability and reduced system software complexity.The complexity measurement of cohesion and coupling component to analyze the relationship between the component module.In this paper,proposed the component selection framework of Hexa-oval optimization algorithm for selecting the suitable components from the repository.It measures the interface density modules of coupling and cohesion in a modular software sys-tem.This cohesion measurement has been taken into two parameters for analyz-ing the result of complexity,with the help of low cohesion and high cohesion.In coupling measures between the component of inside parameters and outside parameters.Thefinal process of coupling and cohesion,the measured values were used for the average calculation of components parameter.This paper measures the complexity of direct and indirect interaction among the component as well as the proposed algorithm selecting the optimal component for the repository.The better result is observed for high cohesion and low coupling in compo-nent-based software engineering.