Diabetic kidney disease(DKD)has a high incidence and mortality rate and lacks effective preventive and therapeutic methods.Apoptosis is one of the main reasons for the occurrence and development of DKD.Mesenchymal ste...Diabetic kidney disease(DKD)has a high incidence and mortality rate and lacks effective preventive and therapeutic methods.Apoptosis is one of the main reasons for the occurrence and development of DKD.Mesenchymal stem cells(MSCs)have shown great promise in tissue regeneration for DKD treatment and have protective effects against DKD,including decreased blood glucose and urinary protein levels and improved renal function.MSCs can directly differ-entiate into kidney cells or act via paracrine mechanisms to reduce apoptosis in DKD by modulating signaling pathways.MSC-derived extracellular vesicles(MSC-EVs)mitigate apoptosis and DKD-related symptoms by transferring miRNAs to target cells or organs.However,studies on the regulatory mechanisms of MSCs and MSC-EVs in apoptosis in DKD are insufficient.This review compre-hensively examines the mechanisms of apoptosis in DKD and research progress regarding the roles of MSCs and MSC-EVs in the disease process.展开更多
The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environment...The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environmentally friendly and economical method of P recovery from municipal wastewater,providing the P source for LiFePO_(4) cathodes.The novel approach utilizes the sludge of Fe-coagulant-based chemical P removal(CPR)in wastewater treatment.After a sintering treatment with acid washing,the CPR sludge,enriched with P and Fe,transforms into purified P-Fe oxides(Fe2.1P1.0O5.6).These oxides can substitute up to 35%of the FePO_(4) reagent as precursor,producing a carbon-coated LiFePO_(4)(LiFePO_(4)/C)cathode with a specific discharge capacity of 114.9 mA·h·g^(-1)at current density of 17 mA·g^(-1)),and cycle stability of 99.2%after 100 cycles.The enhanced cycle performance of the as-prepared LiFePO_(4)/C cathode may be attributed to the incorporations of impurities(such as Ca^(2+)and Na^(+))from sludge,with improved stability of crystal structure.Unlike conventional P-fertilizers,this P recovery technology converts 100%of P in CPR sludge into the production of value-added LiFePO_(4)/C cathodes.The recovered P from municipal wastewater can meet up to 35%of the P demand in the Chinese LIBs industry,offering a cost-effective solution for addressing the pressing challenges of P scarcity.展开更多
To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations ...To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses.The model incorporates localized electrochemical reactions,oxygen concentration,and homogeneous solution reactions.For improved computational accuracy,the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions.Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions.With increasing electrolyte film thickness(from 10μm to 500μm),corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation,the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a,and at the troughs from 0.520 mm/a to 0.120 mm/a,with the disparity in corrosion rates diminishing over time.Furthermore,as corrosion progresses,pits propagate deeper into the substrate,exhibiting both vertical penetration and lateral expansion along the passive film interface,ultimately breaching the substrate.This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments.展开更多
Amyloid-beta clearance plays a key role in the pathogenesis of Alzheimer's disease.H oweve r,the variation in functional proteins involved in amyloid-beta clearance and their correlation with amyloid-beta levels r...Amyloid-beta clearance plays a key role in the pathogenesis of Alzheimer's disease.H oweve r,the variation in functional proteins involved in amyloid-beta clearance and their correlation with amyloid-beta levels remain unclea r.In this study,we conducted meta-analyses and a systematic review using studies from the PubMed,Embase,Web of Science,and Cochrane Library databases,including journal articles published from inception to J une 30,2023.The inclusion criteria included studies comparing the levels of functional proteins associated with amyloid-beta clearance in the blood,cere b rospinal fluid,and brain of healthy controls,patients with mild cognitive impairment,and patients with Alzheimer's disease.Additionally,we analyzed the correlation between these functional proteins and amyloid-beta levels in patients with Alzheimer's disease.The methodological quality of the studies was assessed via the Newcastle-Ottawa Scale.Owing to heterogeneity,we utilized either a fixed-effect or random-effect model to assess the 95%confidence interval(CI)of the standard mean difference(SMD)among healthy controls,patients with mild cognitive impairment,and patients with Alzheimer's disease.The findings revealed significant alterations in the levels of insulin-degrading enzymes,neprilysin,matrix metalloproteinase-9,cathepsin D,receptor for advanced glycation end products,and P-glycoprotein in the brains of patients with Alzheimer's disease,patients with mild cognitive impairment,and healthy controls.In cerebrospinal fluid,the levels of triggering receptor expressed on myeloid cells 2 and ubiquitin C-terminal hydrolase L1 are altered,whereas the levels of TREM2,CD40,CD40L,CD14,CD22,cathepsin D,cystatin C,andα2 M in peripheral blood differ.Notably,TREM2 and cathepsin D showed changes in both brain(SMD=0.31,95%CI:0.16-0.47,P<0.001,I^(2)=78.4%;SMD=1.24,95%CI:0.01-2.48,P=0.048,I^(2)=90.1%)and peripheral blood(SMD=1.01,95%CI:0.35-1.66,P=0.003,I^(2)=96.5%;SMD=7.55,95%CI:3.92-11.18,P<0.001,I^(2)=98.2%)samples.Furthermore,correlations were observed between amyloid-beta levels and the levels of TREM2(r=0.16,95%CI:0.04-0.28,P=0.009,I^(2)=74.7%),neprilysin(r=-0.47,95%CI:-0.80-0.14,P=0.005,I^(2)=76.1%),and P-glycoprotein(r=-0.31,95%CI:-0.51-0.11,P=0.002,I^(2)=0.0%)in patients with Alzheimer's disease.These findings suggest that triggering receptor expressed on myeloid cells 2 and cathepsin D could serve as potential diagnostic biomarkers for Alzheimer's disease,whereas triggering receptor expressed on myeloid cells 2,neprilysin,and P-glycoprotein may represent potential therapeutic targets.展开更多
The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client pr...The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client privacy by collecting sensitive data,underscoring the necessity for privacy-preserving solutions like Federated Learning(FL).FL effectively addresses escalating privacy concerns by facilitating collaborative model training without necessitating the sharing of raw data.Given that FL clients autonomously manage training data,encouraging client engagement is pivotal for successful model training.To overcome challenges like unreliable communication and budget constraints,we present ENTIRE,a contract-based dynamic participation incentive mechanism for FL.ENTIRE ensures impartial model training by tailoring participation levels and payments to accommodate diverse client preferences.Our approach involves several key steps.Initially,we examine how random client participation impacts FL convergence in non-convex scenarios,establishing the correlation between client participation levels and model performance.Subsequently,we reframe model performance optimization as an optimal contract design challenge to guide the distribution of rewards among clients with varying participation costs.By balancing budget considerations with model effectiveness,we craft optimal contracts for different budgetary constraints,prompting clients to disclose their participation preferences and select suitable contracts for contributing to model training.Finally,we conduct a comprehensive experimental evaluation of ENTIRE using three real datasets.The results demonstrate a significant 12.9%enhancement in model performance,validating its adherence to anticipated economic properties.展开更多
With the rapid growth of the global population and the increasing demand for healthier diets,improving the nutrient utilization efficiency of staple food crops has become a critical scientific and industrial chal-leng...With the rapid growth of the global population and the increasing demand for healthier diets,improving the nutrient utilization efficiency of staple food crops has become a critical scientific and industrial chal-lenge,prompting innovation in food processing technologies.This review introduces first the common nutritional challenges in the processing of staple food crops,followed by the comprehensive examination of research aiming to enhance the nutritional quality of staple food crop-based foods through innovative processing technologies,including microwave(MW),pulsed electric field(PEF),ultrasound,modern fer-mentation technology,and enzyme technology.Additionally,soybean processing is used as an example to underscore the importance of integrating innovative processing technologies for optimizing nutrient utilization in staple food crops.Although these innovative processing technologies have demonstrated a significant potential to improve nutrient utilization efficiency and enhance the overall nutritional pro-file of staple food crop-based food products,their current limitations must be acknowledged and addressed in future research.Fortunately,advancements in science and technology will facilitate pro-gress in food processing,enabling both the improvement of existing techniques as well as the develop-ment of entirely novel methodologies.This work aims to enhance the understanding of food practitioners on the way processing technologies may optimize nutrient utilization,thereby fostering innovation in food processing research and synergistic multi-technological strategies,ultimately providing valuable references to address global food security challenges.展开更多
BACKGROUND Malignant obstructive jaundice(MOJ)is characterized by the presence of malignant tumors infiltrating or compressing the bile duct,causing poor bile drainage,generalized yellowing,pain,itching,and malaise.MO...BACKGROUND Malignant obstructive jaundice(MOJ)is characterized by the presence of malignant tumors infiltrating or compressing the bile duct,causing poor bile drainage,generalized yellowing,pain,itching,and malaise.MOJ is burdensome for both the society and the families of affected patients and should be taken seriously.AIM To evaluate the clinical effect of stent placement during endoscopic retrograde cholangiopancreatography for relieving MOJ and the efficacy of percutaneous transhepatic biliary drainage in terms of liver function improvement,complication rates,and long-term patient outcomes.METHODS The clinical data of 59 patients with MOJ who were admitted to our hospital between March 2018 and August 2019 were retrospectively analyzed.According to the treatment method,the patients were divided into an observation group(29 patients)and a control group(30 patients).General data,liver function indices,complications,adverse effects,and 3-year survival rates after different surgical treatments were recorded for the two groups.RESULTS There were no significant differences in baseline information(sex,age,tumor type,or tumor diameter)between the two groups(P>0.05).Alanine aminotransferase,aspartate aminotransferase,and total bilirubin levels were significantly better in both groups after surgery than before surgery(P<0.05).The overall incidence of biliary bleeding,gastrointestinal bleeding,pancreatitis,and cholangitis was 6.9%in the observation group and 30%in the control group(P<0.05).No significant differences in the rates of blood transfusion,intensive care unit admission,or death within 3 years were observed between the two groups at the 1-month follow-up(P>0.05).The 3-year survival rates were 46.06%and 39.71%in the observation and control groups,respectively.CONCLUSION Endoscopic biliary stenting effectively relieves MOJ and significantly improves liver function,with minimal complications.This technique is a promising palliative approach for patients ineligible for radical surgery.However,further research is needed to optimize current treatment strategies and to explore their potential in treating nonmalignant cases of obstructive jaundice.展开更多
Inspired by the ubiquitous helical structures in nature,research on artificial helices has attracted increasing attention.As a unique and complex three-dimensional(3D)geometry in the microscopic world,the micro-/nano ...Inspired by the ubiquitous helical structures in nature,research on artificial helices has attracted increasing attention.As a unique and complex three-dimensional(3D)geometry in the microscopic world,the micro-/nano helix has significant advantages in wide applications due to its distinctive properties at the micro-scale.Micro-/nanotechnology is advancing rapidly.The geometric complexity of helical structure poses technical challenges for the manufacturing at the micro-/nanoscale,requiring some emerging manufacturing techniques.In this review,we systematically classify and summarize existing manufacturing methods for micro/nano helical structures and their underlying mechanisms.Based on the unique physical properties of helical structures at the microscale,their latest applications are analyzed across different fields.Finally,we conclude the challenges and future research directions of micro-/nano helices in manufacturing methods and applications.展开更多
Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic...Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic aperture radar(SAR)interferometry to enhance the spatial resolution of Sea topography.Nevertheless,current payload capacity and satellite hardware limitations prevent the extension of the interferometric baseline by enlarging the physical antenna size.This constraint hinders achieving centimeter-level accuracy in interferometric altimetry.To address this challenge,we conducted a numerical simulation to assess the viability of a large baseline interferometric imaging altimeter(LB-IIA).By controlling the baseline within the range of 600-1000 m through spiral orbit design in two satellites and mitigating baseline de-correlation with the carrier frequency shift(CFS)technique,we aimed to overcome the above limitations.Our findings demonstrate the efficacy of the CFS technique in compensating for baseline decoherence,elevating coherence from less than 0.1 to over 0.85.Concurrently.The height difference accuracy between neighboring sea surfaces reaches 1 cm within a 1 km resolution.This study is anticipated to serve as a foundational reference for future interferometric imaging altimeter development,catering to the demand for high-precision sea topography data in accurate global bathymetry inversion.展开更多
The hydrothermal signatures of mid-ocean ridge sediments are crucial geochemical data providing insights into investigating hydrothermal anomalies and locating seafloor massive sulfide deposits.This paper outlines the...The hydrothermal signatures of mid-ocean ridge sediments are crucial geochemical data providing insights into investigating hydrothermal anomalies and locating seafloor massive sulfide deposits.This paper outlines the geochemical features of 24 surface sediments and one sediment core(26 V-GC 01,294 cm)along the South Mid-Atlantic Ridge(SMAR)from 18°S to 22°S,an area where hydrothermal active fields have yet to be discovered.The surface sediments mainly consist of biogenic carbonates,aluminosilicates,and hydrothermal Fe-Mn(oxy)oxides.The core sediments primarily comprise organic matter,detrital materials,hydrothermal components,and substances scavenged from seawater.The rare Earth element(REE)patterns suggest the presence of hydrothermal contributions within the surface and core sediments.The enrichment factors for Fe,Mn,Cu,and Zn in surface sediments suggest these metals are concentrated at the 19°S,21°S,and 21.5°S segments,further indicating their potential as hydrothermal active fields.Downcore variations of Fe,Mn,P,Cu,Pb,V,and Co suggest at least six episodes of hydrothermal activity.The impact of hydrothermal processes on the sediments from SMAR 18°S to 22°S indicates that the study area has the potential to host a significant number of hydrothermal active fields.展开更多
Small-scale magnetic soft robots are promising candidates for minimally invasive medical applications;however,they struggle to achieve efficient locomotion across various interfaces.In this study,we propose a magnetic...Small-scale magnetic soft robots are promising candidates for minimally invasive medical applications;however,they struggle to achieve efficient locomotion across various interfaces.In this study,we propose a magnetic soft robot that integrates two distinct bio-inspired locomotion modes for enhanced interface navigation.Inspired by water striders’superhydrophobic legs and the meniscus climbing behavior of Pyrrhalta nymphaeae larvae,we developed a rectangular sheet-based robot with hydrophobic surface treatment and novel control strategies.The proposed robot implements two locomotion modes:a bipedal peristaltic locomotion mode(BPLM)and a single-region contact-vibration locomotion mode(SCLM).The BPLM achieves stable movement at 20 mm/s through coordinated front-rear contact points,whereas the SCLM reaches an ultrafast speed of 52 mm/s by optimizing surface tension interactions.The proposed robot demonstrates precise trajectory control with minimal deviations and successfully navigates confined spaces while manipulating objects.Theoretical analysis and experimental validation demonstrate that the integration of triangular wave control signals and steady-state components enables smooth transitions between locomotion modes.This study presents a new paradigm for bio-inspired design of small-scale robots and demonstrates the potential for medical applications requiring precise navigation across multiple terrains.展开更多
Background:To comprehensively analyze the clinical characteristics of patients who underwent gastric endoscopic submucosal dissection(ESD)and explore the incidence and influencing factors of postoperative pain.Methods...Background:To comprehensively analyze the clinical characteristics of patients who underwent gastric endoscopic submucosal dissection(ESD)and explore the incidence and influencing factors of postoperative pain.Methods:The clinical data of patients who underwent gastric ESD at our center from 2009 to 2024 were retrospectively analyzed.Pain severity was assessed using a visual analogue scale,with a score≥4 defined as postoperative pain.Based on the presence or absence of postoperative pain,patients were divided into a pain group and a control group.Independent factors influencing postoperative pain were identified using multivariate logistic regression analysis.To control for confounding bias,patients in the case and control groups were matched by sex and lesion size,and the matched participants were further analyzed using a conditional logistic regression model.Results:In total,993 patients were analyzed.The incidence of postoperative pain was 9.1%(95%confidence interval[CI],7.3-11.1).In the univariate analysis,sex,operation duration,anesthesia method,intraoperative electrocoagulation,nasogastric tube placement,and postoperative vomiting were significantly associated with postoperative pain.Multivariate analysis identified eight independent factors:male sex(odds ratio[OR],0.61;95%CI,0.37-0.97;p=0.04),operation duration(OR,1.29;95%CI,1.03-1.63;p=0.02),protuberant lesions(OR,0.43;95%CI,0.26-0.71;p<0.01),antral lesions(OR,1.84;95%CI,1.10-3.05;p=0.01),intubation general anesthesia(OR,0.40;95%CI,0.22-0.72;p=0.002),intraoperative electrocoagulation(OR,0.32;95%CI,0.19-0.55;p<0.01),nasogastric tube placement(OR,2.005;95%CI,1.12-3.57;p=0.01),and postoperative vomiting(OR,3.24;95%CI,1.40-7.47;p=0.005).Conditional logistic regression analysis further identified diabetes mellitus(OR,2.50;95%CI,1.03-6.06;p=0.04).Conclusion:Female sex,diabetes mellitus,concave-type lesions,lesions in the gastric antrum,non-intubation general anesthesia,absence of intraoperative electrocoagulation,prolonged operation duration,nasogastric tube placement,and postoperative vomiting were independent factors associated with moderate to severe pain after gastric ESD.For patients at increased risk of postoperative pain,appropriate prophylactic and therapeutic measures during the perioperative period may effectively alleviate pain following gastric ESD.展开更多
Barocaloric materials have attracted extensive attention for their promising applications in low-carbon refrigeration technology.Given that the performances of barocaloric materials are intrinsically and even inversel...Barocaloric materials have attracted extensive attention for their promising applications in low-carbon refrigeration technology.Given that the performances of barocaloric materials are intrinsically and even inversely correlated,an overall trade-off is necessitated.Here,we have prepared the 1-bromoadamantanegraphene composite(15 wt.%graphene),whose pressure-induced entropy change,pressure-induced adiabatic temperature change,and thermal hysteresis nearly remain unchanged.The pressure-induced adiabatic temperature change is comparable to the prototype neopentylglycol while the thermal hysteresis is much smaller.More importantly,by incorporating the additive the thermal conductivity has been elevated by 10 times.Such a combination renders the composite state-of-the-art barocaloric performances and is expected to benefit the design of barocaloric refrigeration technology.展开更多
To enhance the efficiency of wind energy harvesters,aerodynamic modifications to bluff bodies prove highly effective.This study introduces two innovative galloping piezoelectric energy harvesters(GPEHs)equipped with t...To enhance the efficiency of wind energy harvesters,aerodynamic modifications to bluff bodies prove highly effective.This study introduces two innovative galloping piezoelectric energy harvesters(GPEHs)equipped with two symmetrical splitters on a cuboid bluff body:GPEH with upstream splitters(GPEH-US)and GPEH with downstream splitters(GPEH-DS).Wind tunnel experiments evaluated the impact of splitter angle and length on energy harvesting performance across varying wind speeds.The results indicate that larger splitter angles and shorter lengths are more favorable for energy harvesting in GPEH-US.The optimal configuration,determined as GPEH-US with α=90°,L=0.4D,reduces the threshold wind speed,expands the effective wind speed range for energy harvesting,and increases maximum voltage and power output by over 99%,301%,respectively,compared with conventional GPEH.Conversely,GPEH-DS are less effective for energy harvesting but demonstrate potential in vibration control applications.Computational fluid dynamics(CFD)simulations using the OpenFOAM toolbox qualitatively elucidate the physical mechanisms driving these results.A larger splitter angle enables secondary small-scale vortices(SV)to absorb more energy,accelerates boundary layer separation,intensifies and disorderly vortex shedding,enhances aerodynamic instability,and improves energy harvesting performance.展开更多
To enhance methane production efficiency in lignite anaerobic digestion and explore new ways for residual sludge utilization, this study employed the co-fermentation of lignite and residual sludge for biomethane conve...To enhance methane production efficiency in lignite anaerobic digestion and explore new ways for residual sludge utilization, this study employed the co-fermentation of lignite and residual sludge for biomethane conversion. The bacterial colony structure, metabolic pathways, and interactions between residual sludge and lignite in anaerobic methanogenic fermentation with different mass ratios were analyzed using macrogenomics sequencing. This study aimed to explore the mechanisms involved in the co-anaerobic fermentation of lignite and residual sludge. The results indicated that the addition of sludge enhanced the metabolic pathways in hydrolysis acidification, hydrogen-acetic acid production, and methanation phases. Notably, the enhancement of acetate- and carbon dioxide-nutrient metabolic pathways was more pronounced, with increased activity observed in related enzymes such as acetic acid kinase (k00925) and acetyl coenzyme synthetase (K01895). This increased enzymatic activity facilitated the microbial conversion of biomethane. The results of the study indicated that the sludge exhibited a promotional effect on the methane produced through the anaerobic fermentation of lignite, providing valuable insights for lignite and residual sludge resource utilization.展开更多
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of...Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.展开更多
Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm...Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.展开更多
In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distanc...In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future.展开更多
Employing crystal facets to regulate the catalytic properties in electrocatalytic carbon dioxide reduction reaction(eCO_(2)RR)has been well demonstrated on electrocatalysts containing single metals but rarely explored...Employing crystal facets to regulate the catalytic properties in electrocatalytic carbon dioxide reduction reaction(eCO_(2)RR)has been well demonstrated on electrocatalysts containing single metals but rarely explored for bimetallic systems.Here,we synthesize ZnSn(OH)_(6)(ZSO)microcrystals(MCs)with distinct facets and investigate the facet effects in eCO_(2)RR.Electrochemical studies and in situ Fourier Transform Infrared Spectroscopy(in situ-FTIR)reveal that ZSO MCs produce mainly C1 products of HCOOH and CO.The{111}facet of the ZSO MCS exhibits higher selectivity and faradaic efficiency(FE)than that of the{100}facet over a wide range of potentials(-0.9 V∼-1.3 V versus RHE).Density Functional Theory(DFT)calculations elucidate that the{111}facet is favorable to the adsorption/activation of CO_(2)molecules,the formation of intermediate in the rate-determining step,and the desorption of C1 products of CO and HCOOH molecules.展开更多
Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has b...Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.展开更多
基金Supported by Science and Technology Research Program of Jilin Provincial Department of Education,No.JJKH20231218KJProject of the Jilin Provincial Administration of Traditional Chinese Medicine,No.2024111.
文摘Diabetic kidney disease(DKD)has a high incidence and mortality rate and lacks effective preventive and therapeutic methods.Apoptosis is one of the main reasons for the occurrence and development of DKD.Mesenchymal stem cells(MSCs)have shown great promise in tissue regeneration for DKD treatment and have protective effects against DKD,including decreased blood glucose and urinary protein levels and improved renal function.MSCs can directly differ-entiate into kidney cells or act via paracrine mechanisms to reduce apoptosis in DKD by modulating signaling pathways.MSC-derived extracellular vesicles(MSC-EVs)mitigate apoptosis and DKD-related symptoms by transferring miRNAs to target cells or organs.However,studies on the regulatory mechanisms of MSCs and MSC-EVs in apoptosis in DKD are insufficient.This review compre-hensively examines the mechanisms of apoptosis in DKD and research progress regarding the roles of MSCs and MSC-EVs in the disease process.
基金supported by the National Natural Science Foundation of China(52100093,52270128,and 52261135627)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011734 and 2021B1515120068)+2 种基金the Municipal Science and Technology Innovation Council of the Shen-zhen Government(KCXFZ20211020163556020 and SGDX20230116092359002)the Research Grants Council(17210219)the Innovation and Technology Fund(ITS/242/20FP)of the Hong Kong SAR Government。
文摘The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environmentally friendly and economical method of P recovery from municipal wastewater,providing the P source for LiFePO_(4) cathodes.The novel approach utilizes the sludge of Fe-coagulant-based chemical P removal(CPR)in wastewater treatment.After a sintering treatment with acid washing,the CPR sludge,enriched with P and Fe,transforms into purified P-Fe oxides(Fe2.1P1.0O5.6).These oxides can substitute up to 35%of the FePO_(4) reagent as precursor,producing a carbon-coated LiFePO_(4)(LiFePO_(4)/C)cathode with a specific discharge capacity of 114.9 mA·h·g^(-1)at current density of 17 mA·g^(-1)),and cycle stability of 99.2%after 100 cycles.The enhanced cycle performance of the as-prepared LiFePO_(4)/C cathode may be attributed to the incorporations of impurities(such as Ca^(2+)and Na^(+))from sludge,with improved stability of crystal structure.Unlike conventional P-fertilizers,this P recovery technology converts 100%of P in CPR sludge into the production of value-added LiFePO_(4)/C cathodes.The recovered P from municipal wastewater can meet up to 35%of the P demand in the Chinese LIBs industry,offering a cost-effective solution for addressing the pressing challenges of P scarcity.
基金supported by the National Natural Science Foundation of China(No.52074130)Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education,200237 Shanghai,PR China.
文摘To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses.The model incorporates localized electrochemical reactions,oxygen concentration,and homogeneous solution reactions.For improved computational accuracy,the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions.Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions.With increasing electrolyte film thickness(from 10μm to 500μm),corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation,the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a,and at the troughs from 0.520 mm/a to 0.120 mm/a,with the disparity in corrosion rates diminishing over time.Furthermore,as corrosion progresses,pits propagate deeper into the substrate,exhibiting both vertical penetration and lateral expansion along the passive film interface,ultimately breaching the substrate.This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments.
基金supported by the National Natural Science Foundation of China,No.81571046(to KZ)Key Project of Educational Department of Liaoning Province,No.LJKZ0755(to KZ)+2 种基金Project of Department of Science&Technology of Liaoning Province,No.2023JH2/20200116(to KZ)Shenyang Young and Middleaged Innovative Talents Support Program,No.RC210240(to KZ)the 345 Talent Project of Shengjing Hospital of China Medical University(to LH)。
文摘Amyloid-beta clearance plays a key role in the pathogenesis of Alzheimer's disease.H oweve r,the variation in functional proteins involved in amyloid-beta clearance and their correlation with amyloid-beta levels remain unclea r.In this study,we conducted meta-analyses and a systematic review using studies from the PubMed,Embase,Web of Science,and Cochrane Library databases,including journal articles published from inception to J une 30,2023.The inclusion criteria included studies comparing the levels of functional proteins associated with amyloid-beta clearance in the blood,cere b rospinal fluid,and brain of healthy controls,patients with mild cognitive impairment,and patients with Alzheimer's disease.Additionally,we analyzed the correlation between these functional proteins and amyloid-beta levels in patients with Alzheimer's disease.The methodological quality of the studies was assessed via the Newcastle-Ottawa Scale.Owing to heterogeneity,we utilized either a fixed-effect or random-effect model to assess the 95%confidence interval(CI)of the standard mean difference(SMD)among healthy controls,patients with mild cognitive impairment,and patients with Alzheimer's disease.The findings revealed significant alterations in the levels of insulin-degrading enzymes,neprilysin,matrix metalloproteinase-9,cathepsin D,receptor for advanced glycation end products,and P-glycoprotein in the brains of patients with Alzheimer's disease,patients with mild cognitive impairment,and healthy controls.In cerebrospinal fluid,the levels of triggering receptor expressed on myeloid cells 2 and ubiquitin C-terminal hydrolase L1 are altered,whereas the levels of TREM2,CD40,CD40L,CD14,CD22,cathepsin D,cystatin C,andα2 M in peripheral blood differ.Notably,TREM2 and cathepsin D showed changes in both brain(SMD=0.31,95%CI:0.16-0.47,P<0.001,I^(2)=78.4%;SMD=1.24,95%CI:0.01-2.48,P=0.048,I^(2)=90.1%)and peripheral blood(SMD=1.01,95%CI:0.35-1.66,P=0.003,I^(2)=96.5%;SMD=7.55,95%CI:3.92-11.18,P<0.001,I^(2)=98.2%)samples.Furthermore,correlations were observed between amyloid-beta levels and the levels of TREM2(r=0.16,95%CI:0.04-0.28,P=0.009,I^(2)=74.7%),neprilysin(r=-0.47,95%CI:-0.80-0.14,P=0.005,I^(2)=76.1%),and P-glycoprotein(r=-0.31,95%CI:-0.51-0.11,P=0.002,I^(2)=0.0%)in patients with Alzheimer's disease.These findings suggest that triggering receptor expressed on myeloid cells 2 and cathepsin D could serve as potential diagnostic biomarkers for Alzheimer's disease,whereas triggering receptor expressed on myeloid cells 2,neprilysin,and P-glycoprotein may represent potential therapeutic targets.
基金supported by the National Natural Science Foundation of China(Nos.62072411,62372343,62402352,62403500)the Key Research and Development Program of Hubei Province(No.2023BEB024)the Open Fund of Key Laboratory of Social Computing and Cognitive Intelligence(Dalian University of Technology),Ministry of Education(No.SCCI2024TB02).
文摘The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client privacy by collecting sensitive data,underscoring the necessity for privacy-preserving solutions like Federated Learning(FL).FL effectively addresses escalating privacy concerns by facilitating collaborative model training without necessitating the sharing of raw data.Given that FL clients autonomously manage training data,encouraging client engagement is pivotal for successful model training.To overcome challenges like unreliable communication and budget constraints,we present ENTIRE,a contract-based dynamic participation incentive mechanism for FL.ENTIRE ensures impartial model training by tailoring participation levels and payments to accommodate diverse client preferences.Our approach involves several key steps.Initially,we examine how random client participation impacts FL convergence in non-convex scenarios,establishing the correlation between client participation levels and model performance.Subsequently,we reframe model performance optimization as an optimal contract design challenge to guide the distribution of rewards among clients with varying participation costs.By balancing budget considerations with model effectiveness,we craft optimal contracts for different budgetary constraints,prompting clients to disclose their participation preferences and select suitable contracts for contributing to model training.Finally,we conduct a comprehensive experimental evaluation of ENTIRE using three real datasets.The results demonstrate a significant 12.9%enhancement in model performance,validating its adherence to anticipated economic properties.
基金supported by the National Key Research and Development Program of China(2023YFD2100205)the Fujian Province Science and Technology Plan Project,China(2023N3008).
文摘With the rapid growth of the global population and the increasing demand for healthier diets,improving the nutrient utilization efficiency of staple food crops has become a critical scientific and industrial chal-lenge,prompting innovation in food processing technologies.This review introduces first the common nutritional challenges in the processing of staple food crops,followed by the comprehensive examination of research aiming to enhance the nutritional quality of staple food crop-based foods through innovative processing technologies,including microwave(MW),pulsed electric field(PEF),ultrasound,modern fer-mentation technology,and enzyme technology.Additionally,soybean processing is used as an example to underscore the importance of integrating innovative processing technologies for optimizing nutrient utilization in staple food crops.Although these innovative processing technologies have demonstrated a significant potential to improve nutrient utilization efficiency and enhance the overall nutritional pro-file of staple food crop-based food products,their current limitations must be acknowledged and addressed in future research.Fortunately,advancements in science and technology will facilitate pro-gress in food processing,enabling both the improvement of existing techniques as well as the develop-ment of entirely novel methodologies.This work aims to enhance the understanding of food practitioners on the way processing technologies may optimize nutrient utilization,thereby fostering innovation in food processing research and synergistic multi-technological strategies,ultimately providing valuable references to address global food security challenges.
文摘BACKGROUND Malignant obstructive jaundice(MOJ)is characterized by the presence of malignant tumors infiltrating or compressing the bile duct,causing poor bile drainage,generalized yellowing,pain,itching,and malaise.MOJ is burdensome for both the society and the families of affected patients and should be taken seriously.AIM To evaluate the clinical effect of stent placement during endoscopic retrograde cholangiopancreatography for relieving MOJ and the efficacy of percutaneous transhepatic biliary drainage in terms of liver function improvement,complication rates,and long-term patient outcomes.METHODS The clinical data of 59 patients with MOJ who were admitted to our hospital between March 2018 and August 2019 were retrospectively analyzed.According to the treatment method,the patients were divided into an observation group(29 patients)and a control group(30 patients).General data,liver function indices,complications,adverse effects,and 3-year survival rates after different surgical treatments were recorded for the two groups.RESULTS There were no significant differences in baseline information(sex,age,tumor type,or tumor diameter)between the two groups(P>0.05).Alanine aminotransferase,aspartate aminotransferase,and total bilirubin levels were significantly better in both groups after surgery than before surgery(P<0.05).The overall incidence of biliary bleeding,gastrointestinal bleeding,pancreatitis,and cholangitis was 6.9%in the observation group and 30%in the control group(P<0.05).No significant differences in the rates of blood transfusion,intensive care unit admission,or death within 3 years were observed between the two groups at the 1-month follow-up(P>0.05).The 3-year survival rates were 46.06%and 39.71%in the observation and control groups,respectively.CONCLUSION Endoscopic biliary stenting effectively relieves MOJ and significantly improves liver function,with minimal complications.This technique is a promising palliative approach for patients ineligible for radical surgery.However,further research is needed to optimize current treatment strategies and to explore their potential in treating nonmalignant cases of obstructive jaundice.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4701200)the National Natural Science Foundation of China(Grant Nos.52335003,52405011 and U22A20176)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022B1515120078 and 2023A1515110313)the Shenzhen Natural Science Fund(the Stable Support Plan Program,Grant No.GXWD20231129161359002)the Shenzhen Science and Technology Program(Grant No.KQTD20210811090146075)Pre-research Task of State Key Laboratory of Robotics and Systems(HIT)(Grant No.SKLRS202421B).
文摘Inspired by the ubiquitous helical structures in nature,research on artificial helices has attracted increasing attention.As a unique and complex three-dimensional(3D)geometry in the microscopic world,the micro-/nano helix has significant advantages in wide applications due to its distinctive properties at the micro-scale.Micro-/nanotechnology is advancing rapidly.The geometric complexity of helical structure poses technical challenges for the manufacturing at the micro-/nanoscale,requiring some emerging manufacturing techniques.In this review,we systematically classify and summarize existing manufacturing methods for micro/nano helical structures and their underlying mechanisms.Based on the unique physical properties of helical structures at the microscale,their latest applications are analyzed across different fields.Finally,we conclude the challenges and future research directions of micro-/nano helices in manufacturing methods and applications.
文摘Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic aperture radar(SAR)interferometry to enhance the spatial resolution of Sea topography.Nevertheless,current payload capacity and satellite hardware limitations prevent the extension of the interferometric baseline by enlarging the physical antenna size.This constraint hinders achieving centimeter-level accuracy in interferometric altimetry.To address this challenge,we conducted a numerical simulation to assess the viability of a large baseline interferometric imaging altimeter(LB-IIA).By controlling the baseline within the range of 600-1000 m through spiral orbit design in two satellites and mitigating baseline de-correlation with the carrier frequency shift(CFS)technique,we aimed to overcome the above limitations.Our findings demonstrate the efficacy of the CFS technique in compensating for baseline decoherence,elevating coherence from less than 0.1 to over 0.85.Concurrently.The height difference accuracy between neighboring sea surfaces reaches 1 cm within a 1 km resolution.This study is anticipated to serve as a foundational reference for future interferometric imaging altimeter development,catering to the demand for high-precision sea topography data in accurate global bathymetry inversion.
基金Supported by the China Ocean Mineral Resources R&D Association(No.DY135-S2-2)the Basic Scientific Fund for National Public Research Institutes of China(No.2021Q01)the National Natural Science Foundation of China(Nos.42106080,42006180,42276080)。
文摘The hydrothermal signatures of mid-ocean ridge sediments are crucial geochemical data providing insights into investigating hydrothermal anomalies and locating seafloor massive sulfide deposits.This paper outlines the geochemical features of 24 surface sediments and one sediment core(26 V-GC 01,294 cm)along the South Mid-Atlantic Ridge(SMAR)from 18°S to 22°S,an area where hydrothermal active fields have yet to be discovered.The surface sediments mainly consist of biogenic carbonates,aluminosilicates,and hydrothermal Fe-Mn(oxy)oxides.The core sediments primarily comprise organic matter,detrital materials,hydrothermal components,and substances scavenged from seawater.The rare Earth element(REE)patterns suggest the presence of hydrothermal contributions within the surface and core sediments.The enrichment factors for Fe,Mn,Cu,and Zn in surface sediments suggest these metals are concentrated at the 19°S,21°S,and 21.5°S segments,further indicating their potential as hydrothermal active fields.Downcore variations of Fe,Mn,P,Cu,Pb,V,and Co suggest at least six episodes of hydrothermal activity.The impact of hydrothermal processes on the sediments from SMAR 18°S to 22°S indicates that the study area has the potential to host a significant number of hydrothermal active fields.
基金supported by the Shenzhen Science and Technology Program(Nos.JCYJ20210324132810026,KQTD20210811090146075,and GXWD20220811164014001)the National Natural Science Foundation of China(Nos.52375175,52005128,62473277,and 52475075)+4 种基金the National Key Research and Development Program of China(No.2022YFC3802302)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515240015)Jiangsu Provincial Outstanding Youth Program(No.BK20230072)Suzhou Industrial Foresight and Key Core Technology Project(No.SYC2022044)a grant from Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,and grants from Jiangsu Qinglan Project and Jiangsu 333 High-level Talents.
文摘Small-scale magnetic soft robots are promising candidates for minimally invasive medical applications;however,they struggle to achieve efficient locomotion across various interfaces.In this study,we propose a magnetic soft robot that integrates two distinct bio-inspired locomotion modes for enhanced interface navigation.Inspired by water striders’superhydrophobic legs and the meniscus climbing behavior of Pyrrhalta nymphaeae larvae,we developed a rectangular sheet-based robot with hydrophobic surface treatment and novel control strategies.The proposed robot implements two locomotion modes:a bipedal peristaltic locomotion mode(BPLM)and a single-region contact-vibration locomotion mode(SCLM).The BPLM achieves stable movement at 20 mm/s through coordinated front-rear contact points,whereas the SCLM reaches an ultrafast speed of 52 mm/s by optimizing surface tension interactions.The proposed robot demonstrates precise trajectory control with minimal deviations and successfully navigates confined spaces while manipulating objects.Theoretical analysis and experimental validation demonstrate that the integration of triangular wave control signals and steady-state components enables smooth transitions between locomotion modes.This study presents a new paradigm for bio-inspired design of small-scale robots and demonstrates the potential for medical applications requiring precise navigation across multiple terrains.
基金supported by Beijing Natural Science Foundation(L232101).
文摘Background:To comprehensively analyze the clinical characteristics of patients who underwent gastric endoscopic submucosal dissection(ESD)and explore the incidence and influencing factors of postoperative pain.Methods:The clinical data of patients who underwent gastric ESD at our center from 2009 to 2024 were retrospectively analyzed.Pain severity was assessed using a visual analogue scale,with a score≥4 defined as postoperative pain.Based on the presence or absence of postoperative pain,patients were divided into a pain group and a control group.Independent factors influencing postoperative pain were identified using multivariate logistic regression analysis.To control for confounding bias,patients in the case and control groups were matched by sex and lesion size,and the matched participants were further analyzed using a conditional logistic regression model.Results:In total,993 patients were analyzed.The incidence of postoperative pain was 9.1%(95%confidence interval[CI],7.3-11.1).In the univariate analysis,sex,operation duration,anesthesia method,intraoperative electrocoagulation,nasogastric tube placement,and postoperative vomiting were significantly associated with postoperative pain.Multivariate analysis identified eight independent factors:male sex(odds ratio[OR],0.61;95%CI,0.37-0.97;p=0.04),operation duration(OR,1.29;95%CI,1.03-1.63;p=0.02),protuberant lesions(OR,0.43;95%CI,0.26-0.71;p<0.01),antral lesions(OR,1.84;95%CI,1.10-3.05;p=0.01),intubation general anesthesia(OR,0.40;95%CI,0.22-0.72;p=0.002),intraoperative electrocoagulation(OR,0.32;95%CI,0.19-0.55;p<0.01),nasogastric tube placement(OR,2.005;95%CI,1.12-3.57;p=0.01),and postoperative vomiting(OR,3.24;95%CI,1.40-7.47;p=0.005).Conditional logistic regression analysis further identified diabetes mellitus(OR,2.50;95%CI,1.03-6.06;p=0.04).Conclusion:Female sex,diabetes mellitus,concave-type lesions,lesions in the gastric antrum,non-intubation general anesthesia,absence of intraoperative electrocoagulation,prolonged operation duration,nasogastric tube placement,and postoperative vomiting were independent factors associated with moderate to severe pain after gastric ESD.For patients at increased risk of postoperative pain,appropriate prophylactic and therapeutic measures during the perioperative period may effectively alleviate pain following gastric ESD.
基金financially supported by the Ministry of Science and Technology of China(No.2022YFE0109900)Key Research Program of Frontier Sciences of Chinese Academy of Sciences(No.ZDBS-LY-JSC002)+3 种基金the National Natural Science Foundation of China(Nos.52401253 and 52201029)the Natural Science Foundation of Liaoning Province(No.2024-BSBA-41)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(No.GZC20232741)Innovation Fund of Institute of Metal Research,CAS(No.2024-PY05).
文摘Barocaloric materials have attracted extensive attention for their promising applications in low-carbon refrigeration technology.Given that the performances of barocaloric materials are intrinsically and even inversely correlated,an overall trade-off is necessitated.Here,we have prepared the 1-bromoadamantanegraphene composite(15 wt.%graphene),whose pressure-induced entropy change,pressure-induced adiabatic temperature change,and thermal hysteresis nearly remain unchanged.The pressure-induced adiabatic temperature change is comparable to the prototype neopentylglycol while the thermal hysteresis is much smaller.More importantly,by incorporating the additive the thermal conductivity has been elevated by 10 times.Such a combination renders the composite state-of-the-art barocaloric performances and is expected to benefit the design of barocaloric refrigeration technology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52271282,51909189 and 52277227)supported by the Open fund of Key Laboratory of Low-grade Energy Utilization Technologies and Systems,Ministry of Education of China,Chongqing University,(Grant No.LLEUTS-202410)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010846)the Shenzhen Science and Technology Programme(Grant Nos.RCYX20231211090210018,WDZC20231125203917001)the Tsinghua Shenzhen International Graduate School via the Scientific Research Start-Up Funds(Grant No.QD2021023C).
文摘To enhance the efficiency of wind energy harvesters,aerodynamic modifications to bluff bodies prove highly effective.This study introduces two innovative galloping piezoelectric energy harvesters(GPEHs)equipped with two symmetrical splitters on a cuboid bluff body:GPEH with upstream splitters(GPEH-US)and GPEH with downstream splitters(GPEH-DS).Wind tunnel experiments evaluated the impact of splitter angle and length on energy harvesting performance across varying wind speeds.The results indicate that larger splitter angles and shorter lengths are more favorable for energy harvesting in GPEH-US.The optimal configuration,determined as GPEH-US with α=90°,L=0.4D,reduces the threshold wind speed,expands the effective wind speed range for energy harvesting,and increases maximum voltage and power output by over 99%,301%,respectively,compared with conventional GPEH.Conversely,GPEH-DS are less effective for energy harvesting but demonstrate potential in vibration control applications.Computational fluid dynamics(CFD)simulations using the OpenFOAM toolbox qualitatively elucidate the physical mechanisms driving these results.A larger splitter angle enables secondary small-scale vortices(SV)to absorb more energy,accelerates boundary layer separation,intensifies and disorderly vortex shedding,enhances aerodynamic instability,and improves energy harvesting performance.
文摘To enhance methane production efficiency in lignite anaerobic digestion and explore new ways for residual sludge utilization, this study employed the co-fermentation of lignite and residual sludge for biomethane conversion. The bacterial colony structure, metabolic pathways, and interactions between residual sludge and lignite in anaerobic methanogenic fermentation with different mass ratios were analyzed using macrogenomics sequencing. This study aimed to explore the mechanisms involved in the co-anaerobic fermentation of lignite and residual sludge. The results indicated that the addition of sludge enhanced the metabolic pathways in hydrolysis acidification, hydrogen-acetic acid production, and methanation phases. Notably, the enhancement of acetate- and carbon dioxide-nutrient metabolic pathways was more pronounced, with increased activity observed in related enzymes such as acetic acid kinase (k00925) and acetyl coenzyme synthetase (K01895). This increased enzymatic activity facilitated the microbial conversion of biomethane. The results of the study indicated that the sludge exhibited a promotional effect on the methane produced through the anaerobic fermentation of lignite, providing valuable insights for lignite and residual sludge resource utilization.
基金supported in part by the National Natural Science Foundation of China(82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)+5 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Mainland-Hong Kong Joint Funding Scheme(MHKJFS)(MHP/005/20),the Project of Strategic Importance Fund(P0035421)the Projects of RISA(P0043001)from the Hong Kong Polytechnic University,the Natural Science Foundation of Jiangsu Province(BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038,SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575),and the Henan Province Science and Technology Research(222102310322).
文摘Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.
基金financially supported by the National Natural Science Foundation of China(No.52074130)the Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education。
文摘Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.
基金This research was funded by the National Natural Science Foundation of China(Grant No.52174113)the Young Jinggang Scholars Award Program in Jiangxi Province,China(Grant No.QNJG2018051)the“Thousand Talents”of Jiangxi Province,China(Grant No.jxsq2019201043).
文摘In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future.
基金the Fundamental Research Funds for the Central Universities and the Fundamental Science Research of Harbin Institute of Technology(No.AUGA2160100119,AUGA9803100120,AUGA5710001120).
文摘Employing crystal facets to regulate the catalytic properties in electrocatalytic carbon dioxide reduction reaction(eCO_(2)RR)has been well demonstrated on electrocatalysts containing single metals but rarely explored for bimetallic systems.Here,we synthesize ZnSn(OH)_(6)(ZSO)microcrystals(MCs)with distinct facets and investigate the facet effects in eCO_(2)RR.Electrochemical studies and in situ Fourier Transform Infrared Spectroscopy(in situ-FTIR)reveal that ZSO MCs produce mainly C1 products of HCOOH and CO.The{111}facet of the ZSO MCS exhibits higher selectivity and faradaic efficiency(FE)than that of the{100}facet over a wide range of potentials(-0.9 V∼-1.3 V versus RHE).Density Functional Theory(DFT)calculations elucidate that the{111}facet is favorable to the adsorption/activation of CO_(2)molecules,the formation of intermediate in the rate-determining step,and the desorption of C1 products of CO and HCOOH molecules.
基金supported by the National Key R&D Program of China(2021YFA0718500)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)+1 种基金the National Natural Science Foundation of China(grant Nos.12173038 and U2038106)the National HEP Data Center(grant No.E029S2S1)。
文摘Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.