The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing v...The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing vital functions.The alloy consists of an a-Mg matrix and a eutectic composed of a-Mg4-Ca2Mg6Zn3.The eutectic product enhances the mechanical properties of the studied alloy,causing strengthening and providing superior hardness values.In this alloy,cracks initiate at the intermetallic compounds and progress through the matrix because of the open network formed by the eutectics.Attending to the corrosion results,the eutectic product presents a noble potential compared to the a-Mg phase.For this reason,the corrosion progresses preferentially through the matrix,avoiding the(α-Mg+Ca2Mg6Zri3)eutectic product,when the alloy is in direct contact to Hank's solution.展开更多
The effect of heat treatment on the mechanical and biocorrosion behaviour of the Mg-1 wt.%Zn-1 wt.%Ca(ZX11)and Mg-3 wt.%Zn-0.4 wt.%Ca(ZX30)alloys was evaluated.For this purpose,three-point bending tests as well as ele...The effect of heat treatment on the mechanical and biocorrosion behaviour of the Mg-1 wt.%Zn-1 wt.%Ca(ZX11)and Mg-3 wt.%Zn-0.4 wt.%Ca(ZX30)alloys was evaluated.For this purpose,three-point bending tests as well as electrochemical and immersion tests in Hank’s solution were performed on both alloys in four different thermal conditions:as-cast,solution-treated,peak-aged and over-aged.Microstructural examinations revealed that the as-cast ZX11 and ZX30 alloys exhibit a microstructure composed ofα-Mg grains separated by large Mg_(2)Ca and Ca_(2)Mg_(6)Zn_(3) particles and by large Ca_(2)Mg_(6)Zn_(3) particles,respectively.During solution treatment,the Ca_(2)Mg_(6)Zn_(3) precipitates at the grain boundaries(GBs)are fully dissolved in the ZX11 alloy,but mainly redistributed to form a more connected configuration in the ZX30 alloy,showing a poor age-hardening response.Consequently,after solution-treatment,galvanic corrosion and corrosion rate decreases in the former,but increases in the latter.The peak-aged condition displays the highest corrosion rate for both alloys,maybe due to an excessive number density of fine Ca_(2)Mg_(6)Zn_(3) particles acting as cathodic sites.However,the over-aged condition shows the lowest corrosion rate for the ZX11 alloy and a very similar one to that of the as-cast sample for the ZX30 alloy.The ZX11 alloy shows generally better biocorrosion behaviour than the ZX30 alloy to its lower content in the Ca_(2)Mg_(6)Zn_(3) phase and thus reduced galvanic corrosion.The Mg_(2)Ca phase present in the studied ZX11 alloy has been proved to exhibit an increased corrosion potential,which has been related to an observed enrichment with Zn.展开更多
基金The authors would like to acknowledge the financial support from the Agencia Estatal de Investigacion(Project RTI2018-096391-B-C31)Comunidad de Madrid(Project ADITIMAT-CM S2018/NMT-4411)the FPU grant(15/03606)from the Ministerio de Educacion,Cultura y Deporte,Spain.
文摘The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing vital functions.The alloy consists of an a-Mg matrix and a eutectic composed of a-Mg4-Ca2Mg6Zn3.The eutectic product enhances the mechanical properties of the studied alloy,causing strengthening and providing superior hardness values.In this alloy,cracks initiate at the intermetallic compounds and progress through the matrix because of the open network formed by the eutectics.Attending to the corrosion results,the eutectic product presents a noble potential compared to the a-Mg phase.For this reason,the corrosion progresses preferentially through the matrix,avoiding the(α-Mg+Ca2Mg6Zri3)eutectic product,when the alloy is in direct contact to Hank's solution.
基金Financial support from the project ADITIMAT-CM S2018/NMT-4411 funded by the Madrid Regional Government is gratefully acknowledgedreceived funding from the Spanish State Research Agency under the project RTI2018–096391-B-C31,which is also acknowledgedthe Spanish Ministry of Education,Culture and Sports for an FPU fellowship。
文摘The effect of heat treatment on the mechanical and biocorrosion behaviour of the Mg-1 wt.%Zn-1 wt.%Ca(ZX11)and Mg-3 wt.%Zn-0.4 wt.%Ca(ZX30)alloys was evaluated.For this purpose,three-point bending tests as well as electrochemical and immersion tests in Hank’s solution were performed on both alloys in four different thermal conditions:as-cast,solution-treated,peak-aged and over-aged.Microstructural examinations revealed that the as-cast ZX11 and ZX30 alloys exhibit a microstructure composed ofα-Mg grains separated by large Mg_(2)Ca and Ca_(2)Mg_(6)Zn_(3) particles and by large Ca_(2)Mg_(6)Zn_(3) particles,respectively.During solution treatment,the Ca_(2)Mg_(6)Zn_(3) precipitates at the grain boundaries(GBs)are fully dissolved in the ZX11 alloy,but mainly redistributed to form a more connected configuration in the ZX30 alloy,showing a poor age-hardening response.Consequently,after solution-treatment,galvanic corrosion and corrosion rate decreases in the former,but increases in the latter.The peak-aged condition displays the highest corrosion rate for both alloys,maybe due to an excessive number density of fine Ca_(2)Mg_(6)Zn_(3) particles acting as cathodic sites.However,the over-aged condition shows the lowest corrosion rate for the ZX11 alloy and a very similar one to that of the as-cast sample for the ZX30 alloy.The ZX11 alloy shows generally better biocorrosion behaviour than the ZX30 alloy to its lower content in the Ca_(2)Mg_(6)Zn_(3) phase and thus reduced galvanic corrosion.The Mg_(2)Ca phase present in the studied ZX11 alloy has been proved to exhibit an increased corrosion potential,which has been related to an observed enrichment with Zn.
基金the support of PID2021-124341OB-C22 and PID2021-124341OB-C21(MCIU/AEI/FEDER,UE)ADITIMAT-CM(S2018/NMT-4411,Regional Government of Madrid and EU Structural Funds)+2 种基金the support of RYC-2017-21843the support of PEJD-2019-POST/IND-16119(Regional Government of Madrid and EU Structural Funds)FEI-EU-20-05(UCM)。