Motivated by recent studies of the cluster Mott insulator candidate compound Nb_(3)Cl_(8),this study performs^(93)Nb and^(35)Cl nuclear magnetic resonance(NMR)measurements to investigate the electron correlations.Belo...Motivated by recent studies of the cluster Mott insulator candidate compound Nb_(3)Cl_(8),this study performs^(93)Nb and^(35)Cl nuclear magnetic resonance(NMR)measurements to investigate the electron correlations.Below the structural transition temperature T_(s)∼97 K,all satellites of the^(93)Nb NMR spectra split into three distinct peaks,which suggests symmetry lowering due to the structural transition and could be attributed to the change in the Nb-Nb bond-lengths of the Nb3 clusters.The spin-lattice relaxation rate 1/T_(1)divided by the temperature T,1/T_(1)T,increases upon cooling to T_(s)for all Cl sites,whereas only the Knight shift K of Cl located at the center of the Nb_(3) clusters exhibits a temperature dependence similar to that observed in magnetic susceptibility.These findings collectively demonstrate the existence of strong spin correlations between the Nb atoms in Nb_(3)Cl_(8),which are closely associated with Mottness.展开更多
Magnetic sensorless sensing experiments of the plasma horizontal positionhave been carried out in the superconducting tokamak HT-7. The horizontal position is calculatedfrom the vertical field coil current and voltage...Magnetic sensorless sensing experiments of the plasma horizontal positionhave been carried out in the superconducting tokamak HT-7. The horizontal position is calculatedfrom the vertical field coil current and voltage without using signals of magnetic probes placednearby a plasma. The calculations are focused on the ripple frequency component of the power supply.There is no drift problem with the time integration of magnetic probe signals. The error of thederived plasma position is lower than 2% of the plasma minor radius.展开更多
基金supported by the National Key Research and Development Projects of China(Grant Nos.2022YFA1403402,2023YFA1406103,2024YFA1409200,2024YFA1611302,and 2023YFF0718400)the National Natural Science Foundation of China(Grant Nos.12374142,12304170,W2411004,and 12374197)+3 种基金the Beijing Natural Science Foundation(Grant No.JQ23001)the Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF005)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023B151520013)supported by the Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘Motivated by recent studies of the cluster Mott insulator candidate compound Nb_(3)Cl_(8),this study performs^(93)Nb and^(35)Cl nuclear magnetic resonance(NMR)measurements to investigate the electron correlations.Below the structural transition temperature T_(s)∼97 K,all satellites of the^(93)Nb NMR spectra split into three distinct peaks,which suggests symmetry lowering due to the structural transition and could be attributed to the change in the Nb-Nb bond-lengths of the Nb3 clusters.The spin-lattice relaxation rate 1/T_(1)divided by the temperature T,1/T_(1)T,increases upon cooling to T_(s)for all Cl sites,whereas only the Knight shift K of Cl located at the center of the Nb_(3) clusters exhibits a temperature dependence similar to that observed in magnetic susceptibility.These findings collectively demonstrate the existence of strong spin correlations between the Nb atoms in Nb_(3)Cl_(8),which are closely associated with Mottness.
基金This work partially supported by the JSPS--CAS Core-University Program on Plasma and Nuclear Fusion
文摘Magnetic sensorless sensing experiments of the plasma horizontal positionhave been carried out in the superconducting tokamak HT-7. The horizontal position is calculatedfrom the vertical field coil current and voltage without using signals of magnetic probes placednearby a plasma. The calculations are focused on the ripple frequency component of the power supply.There is no drift problem with the time integration of magnetic probe signals. The error of thederived plasma position is lower than 2% of the plasma minor radius.