期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure Evolution and Fracture Behavior of(B_(4)C+Al_(2)O_(3))/Al Friction Stir Welded Joints
1
作者 B.M.Shi Y.T.Pang +8 位作者 B.H.Shan b.b.wang Y.Liu P.Xue J.F.Zhang Y.N.Zan Q.Z.Wang B.L.Xiao Z.Y.Ma 《Acta Metallurgica Sinica(English Letters)》 2025年第9期1513-1526,共14页
In dry storage,spent fuel is typically stored in casks constructed from neutron absorbing materials(NAMs).The(B_(4)C+Al_(2)O_(3))/Al composite,which incorporates in-situ amorphous Al_(2)O_(3)(am-Al_(2)O_(3))formed on ... In dry storage,spent fuel is typically stored in casks constructed from neutron absorbing materials(NAMs).The(B_(4)C+Al_(2)O_(3))/Al composite,which incorporates in-situ amorphous Al_(2)O_(3)(am-Al_(2)O_(3))formed on fine aluminum powder as a reinforcing phase,can serve as an integrated structural and functional NAM for dry storage applications.Welding is crucial in the fabrication of these casks.In this study,friction stir welding was performed on(B_(4)C+Al_(2)O_(3))/Al composite sheets at a welding speed of 50 mm/min and rotation rates ranging from 500 to 1000 r/min.The microstructure of the weld joints was analyzed,and the intrinsic relationship between fracture behavior and microstructure was elucidated.Results showed that defect-free joints were achieved at rotation rates of 500 and 750 r/min,while tunnel defects were observed at 1000 r/min.The ultimate tensile strength of the joint welded at 500 r/min was 205.7 MPa,with a strength efficiency of 82%.Microstructural analysis revealed that the grains within the nugget zones(NZs)coarsened and the Al_(2)O_(3)network was disrupted due to the welding thermo-mechanical effect,resulting in softening within the NZs.Fracture locations for all three joints were consistently observed at the NZ boundary on the advancing side(AS).Finite element simulations confirmed that cracks propagated along the NZ boundary on the AS,where stress concentration occurred during tensile testing. 展开更多
关键词 Neutron absorbing materials Friction stir welding(FSW) Microstructure evolution Fracture behavior
原文传递
Enhanced Mechanical Properties of Friction Stir Welded 5083Al-H19 Joints with Additional Water Cooling 被引量:19
2
作者 b.b.wang F.F.Chen +3 位作者 F.Liu W.G.Wang P.Xue Z.Y.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第9期1009-1014,共6页
3-mm-thick 5083Al-H19 rolled plates were friction stir welded(FSW) at tool rotation rates of 800 and200 rpm with and without additional water cooling. With decreasing the rotation rate and applying water cooling, soft... 3-mm-thick 5083Al-H19 rolled plates were friction stir welded(FSW) at tool rotation rates of 800 and200 rpm with and without additional water cooling. With decreasing the rotation rate and applying water cooling, softening in the FSW joint was significantly reduced. At a low rotation rate of 200 rpm with additional water cooling, almost no obvious softening was observed in the FSW joint, and therefore a FSW5083Al-H19 joint with nearly equal strength to the base material(BM) was obtained. Furthermore, the grains in the nugget zone were considerably refined with reducing the heat input and ultrafine equiaxed grains of about 800 nm were obtained in the lowest heat input condition. This work provides an effective method to achieve high property FSW joints of precipitate-hardened and work-hardened Al alloys. 展开更多
关键词 Friction stir welding Aluminum alloy Water cooling Microstructure Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部