期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electromagnetic shielding effectiveness and magnetic phase transitions of neodymium-doped Cu_(0.25)Ni_(0.5)Zn_(0.25)Fe_(2-x)Nd_xO_4nanoferrites
1
作者 K.Seethalakshmi K.Sakthipandi +6 位作者 B.Sethuraman b.alhashmi K.Venkatesan G.Rajkumar Areej S.Alqarni Intikhab A.Ansari M.Srinidhi Raghavan 《Journal of Rare Earths》 2025年第12期2749-2757,I0006,共10页
In this study,Cu_(0.25)Ni_(0.5)Zn_(0.25)Fe_(2-x)Nd_(x)O_(4)(0.000≤x≤0.100,andΔx=0.025)spinel ferrites were synthesized using the auto-combustion method to investigate the influence of neodymium(Nd^(3+))substitution... In this study,Cu_(0.25)Ni_(0.5)Zn_(0.25)Fe_(2-x)Nd_(x)O_(4)(0.000≤x≤0.100,andΔx=0.025)spinel ferrites were synthesized using the auto-combustion method to investigate the influence of neodymium(Nd^(3+))substitution on their structural,optical,dielectric,and magnetic properties.X-ray diffraction result confirms the formation of a face-centered cubic spinel structure,with the average crystallite size decreasing from 39 to 15 nm as Nd^(3+)concentration increases.Fourier transform infrared spectroscopy reveals characteristic absorption bands,affirming the spinel structure.Dielectric measurements over a broad frequency range show a higher dielectric constant and lower dielectric loss,indicating potential suitability for energy-efficient electronic applications.Magnetic analysis using a vibrating sample magnetometer demonstrates soft magnetic behavior,with saturation magnetization decreasing from82.69 to 66.80 emu/g and a tunable ratio(0.0221-0.0068)of remnant magnetization to saturation magnetization depending on Nd^(3+)content.In situ ultrasonic studies provides phase transition temperature(Curie temperature,T_(c))values ranging from 516 to 489 K,highlighting thermal stability and magnetic phase transition behavior.Furthermore,reflection loss measurements in the X-band frequency range(8-12 GHz)confirm the excellent electromagnetic interference shielding and radar absorption capabilities of Cu_(0.25)Ni_(0.5)Zn_(0.25)Fe_(2-x)Nd_(x)O_(4)spinel ferrites.These findings underscore the potential of Nd^(3+)-doped Cu-Ni-Zn spinel ferrites for advanced technological applications,including electronic devices,thermal sensors,and electromagnetic wave absorbers. 展开更多
关键词 Spinel ferrites Structural property Magnetic property Dielectric property Electromagnetic shielding Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部