In this study,Cu_(0.25)Ni_(0.5)Zn_(0.25)Fe_(2-x)Nd_(x)O_(4)(0.000≤x≤0.100,andΔx=0.025)spinel ferrites were synthesized using the auto-combustion method to investigate the influence of neodymium(Nd^(3+))substitution...In this study,Cu_(0.25)Ni_(0.5)Zn_(0.25)Fe_(2-x)Nd_(x)O_(4)(0.000≤x≤0.100,andΔx=0.025)spinel ferrites were synthesized using the auto-combustion method to investigate the influence of neodymium(Nd^(3+))substitution on their structural,optical,dielectric,and magnetic properties.X-ray diffraction result confirms the formation of a face-centered cubic spinel structure,with the average crystallite size decreasing from 39 to 15 nm as Nd^(3+)concentration increases.Fourier transform infrared spectroscopy reveals characteristic absorption bands,affirming the spinel structure.Dielectric measurements over a broad frequency range show a higher dielectric constant and lower dielectric loss,indicating potential suitability for energy-efficient electronic applications.Magnetic analysis using a vibrating sample magnetometer demonstrates soft magnetic behavior,with saturation magnetization decreasing from82.69 to 66.80 emu/g and a tunable ratio(0.0221-0.0068)of remnant magnetization to saturation magnetization depending on Nd^(3+)content.In situ ultrasonic studies provides phase transition temperature(Curie temperature,T_(c))values ranging from 516 to 489 K,highlighting thermal stability and magnetic phase transition behavior.Furthermore,reflection loss measurements in the X-band frequency range(8-12 GHz)confirm the excellent electromagnetic interference shielding and radar absorption capabilities of Cu_(0.25)Ni_(0.5)Zn_(0.25)Fe_(2-x)Nd_(x)O_(4)spinel ferrites.These findings underscore the potential of Nd^(3+)-doped Cu-Ni-Zn spinel ferrites for advanced technological applications,including electronic devices,thermal sensors,and electromagnetic wave absorbers.展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project(No.PNURSP2025R479)。
文摘In this study,Cu_(0.25)Ni_(0.5)Zn_(0.25)Fe_(2-x)Nd_(x)O_(4)(0.000≤x≤0.100,andΔx=0.025)spinel ferrites were synthesized using the auto-combustion method to investigate the influence of neodymium(Nd^(3+))substitution on their structural,optical,dielectric,and magnetic properties.X-ray diffraction result confirms the formation of a face-centered cubic spinel structure,with the average crystallite size decreasing from 39 to 15 nm as Nd^(3+)concentration increases.Fourier transform infrared spectroscopy reveals characteristic absorption bands,affirming the spinel structure.Dielectric measurements over a broad frequency range show a higher dielectric constant and lower dielectric loss,indicating potential suitability for energy-efficient electronic applications.Magnetic analysis using a vibrating sample magnetometer demonstrates soft magnetic behavior,with saturation magnetization decreasing from82.69 to 66.80 emu/g and a tunable ratio(0.0221-0.0068)of remnant magnetization to saturation magnetization depending on Nd^(3+)content.In situ ultrasonic studies provides phase transition temperature(Curie temperature,T_(c))values ranging from 516 to 489 K,highlighting thermal stability and magnetic phase transition behavior.Furthermore,reflection loss measurements in the X-band frequency range(8-12 GHz)confirm the excellent electromagnetic interference shielding and radar absorption capabilities of Cu_(0.25)Ni_(0.5)Zn_(0.25)Fe_(2-x)Nd_(x)O_(4)spinel ferrites.These findings underscore the potential of Nd^(3+)-doped Cu-Ni-Zn spinel ferrites for advanced technological applications,including electronic devices,thermal sensors,and electromagnetic wave absorbers.