For the purpose of high-temperature service and the weight reduction in aviation engineering applications, the dissimilar joining of Ti3Al-based alloy to Ni-based superalloy (GH536) was conducted using Au-17.5Ni (wt%)...For the purpose of high-temperature service and the weight reduction in aviation engineering applications, the dissimilar joining of Ti3Al-based alloy to Ni-based superalloy (GH536) was conducted using Au-17.5Ni (wt%) brazing filler metal. The microstructure and chemical composition at the interfaces were investigated by scanning electron microscope, X-ray diffraction and transmission electron microscope. The diffusion behaviors of elements were analyzed as well. The results indicated that the Ti3Al/GH536 joint microstructure was characterized by multiple layer structures. Element Ni from Au-Ni filler metal reacted with Ti3Al base metal, leading to the formation of AlNi2Ti and NiTi compounds. Element Ni from Ti3Al base metal reacted with Ni and thus Ni3Nb phase was detected in the joint central area. Due to the dissolution of Ni-based superalloy,(Ni,Au) solid solution ((Ni,Au)ss) and Ni-rich phase were visible adjacent to the superalloy side. The average tensile strength of all the joints brazed at 1253 K for 5-20 min was above 356 MPa at room-temperature. In particular, the joints brazed at 1253 K/15 min presented the maximum tensile strength of434 MPa at room-temperature, and the strength of 314 MPa was maintained at 923 K. AlNi2Ti compound resulted in the highest hardness area and the fracture of the samples subjected to the tensile test mainly occurred in this zone.展开更多
We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that t...We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.展开更多
With ever increasing water demands and the continuous intensification of water scarcity arising from China's industrialization, the country is struggling to harmonize its industrial development and water supply. This...With ever increasing water demands and the continuous intensification of water scarcity arising from China's industrialization, the country is struggling to harmonize its industrial development and water supply. This paper presents a systems analysis of water with- drawals by Chinese industry and investigates demand- driven industrial water uses embodied in final demand and interregional trade based on a multi-regional input-output model. In 2007, the Electric Power, Steam, and Hot Water Production and Supply sector ranks first in direct industrial water withdrawal (DWW), and Construction has the largest embodied industrial water use (EWU). Investment, consumption, and exports contribute to 34.6%, 33.3%, and 30.6% of the national total EWU, respectively. Specifically, 58.0%, 51.1%, 48.6%, 43.3%, and 37.5% of the regional EWUs respectively in Guangdong, Shanghai, Zhejiang, Jiangsu, and Fujian are attributed to international exports. The total interregional import/export of embodied water is equivalent to about 40% of the national total DWW, of which 55.5% is associated with the DWWs of Electric Power, Steam, and Hot Water Production and Supply. Jiangsu is the biggest interregional exporter and deficit receiver of embodied water, in contrast to Guangdong as the biggest interregional importer and surplus receiver. Without implementing effective water- saving measures and adjusting industrial structures, the regional imbalance between water availability and water demand tends to intensify considering the water impact of domestic trade of industrial products. Steps taken to improve water use efficiency in production, and to enhance embodied water saving in consumption are both of great significance for supporting China's water policies.展开更多
Using different noble gases,argon,neon and helium,we are able to generate by high-harmonic generation(HHG) just a few harmonic orders in the spectral range 10-35 nm with a photon flux of~2.10 12 photons/(harmonic cm2...Using different noble gases,argon,neon and helium,we are able to generate by high-harmonic generation(HHG) just a few harmonic orders in the spectral range 10-35 nm with a photon flux of~2.10 12 photons/(harmonic cm2 s) for argon and~10 10 photons/(harmonic cm2 s) for helium. The few-harmonic-order radiation is used for coherent diffractive imaging directly without any spectral filter. A spatial resolution of~100 nm is achieved using a~30 nm HHG source.展开更多
基金sponsored by the National Natural Science Foundation of China (No. 51705489)the State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering (No. SKLABFMT201603)
文摘For the purpose of high-temperature service and the weight reduction in aviation engineering applications, the dissimilar joining of Ti3Al-based alloy to Ni-based superalloy (GH536) was conducted using Au-17.5Ni (wt%) brazing filler metal. The microstructure and chemical composition at the interfaces were investigated by scanning electron microscope, X-ray diffraction and transmission electron microscope. The diffusion behaviors of elements were analyzed as well. The results indicated that the Ti3Al/GH536 joint microstructure was characterized by multiple layer structures. Element Ni from Au-Ni filler metal reacted with Ti3Al base metal, leading to the formation of AlNi2Ti and NiTi compounds. Element Ni from Ti3Al base metal reacted with Ni and thus Ni3Nb phase was detected in the joint central area. Due to the dissolution of Ni-based superalloy,(Ni,Au) solid solution ((Ni,Au)ss) and Ni-rich phase were visible adjacent to the superalloy side. The average tensile strength of all the joints brazed at 1253 K for 5-20 min was above 356 MPa at room-temperature. In particular, the joints brazed at 1253 K/15 min presented the maximum tensile strength of434 MPa at room-temperature, and the strength of 314 MPa was maintained at 923 K. AlNi2Ti compound resulted in the highest hardness area and the fracture of the samples subjected to the tensile test mainly occurred in this zone.
基金supported by the National Natural Science Foundation of China (Grants 11372279, 11572285)
文摘We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.
基金This study has been supported by the National Natural Science Foundation of China (Grant No. 71403270), the Foundation of State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology (Grant No. SKLCRSM14KFA03), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120023120002).
文摘With ever increasing water demands and the continuous intensification of water scarcity arising from China's industrialization, the country is struggling to harmonize its industrial development and water supply. This paper presents a systems analysis of water with- drawals by Chinese industry and investigates demand- driven industrial water uses embodied in final demand and interregional trade based on a multi-regional input-output model. In 2007, the Electric Power, Steam, and Hot Water Production and Supply sector ranks first in direct industrial water withdrawal (DWW), and Construction has the largest embodied industrial water use (EWU). Investment, consumption, and exports contribute to 34.6%, 33.3%, and 30.6% of the national total EWU, respectively. Specifically, 58.0%, 51.1%, 48.6%, 43.3%, and 37.5% of the regional EWUs respectively in Guangdong, Shanghai, Zhejiang, Jiangsu, and Fujian are attributed to international exports. The total interregional import/export of embodied water is equivalent to about 40% of the national total DWW, of which 55.5% is associated with the DWWs of Electric Power, Steam, and Hot Water Production and Supply. Jiangsu is the biggest interregional exporter and deficit receiver of embodied water, in contrast to Guangdong as the biggest interregional importer and surplus receiver. Without implementing effective water- saving measures and adjusting industrial structures, the regional imbalance between water availability and water demand tends to intensify considering the water impact of domestic trade of industrial products. Steps taken to improve water use efficiency in production, and to enhance embodied water saving in consumption are both of great significance for supporting China's water policies.
文摘Using different noble gases,argon,neon and helium,we are able to generate by high-harmonic generation(HHG) just a few harmonic orders in the spectral range 10-35 nm with a photon flux of~2.10 12 photons/(harmonic cm2 s) for argon and~10 10 photons/(harmonic cm2 s) for helium. The few-harmonic-order radiation is used for coherent diffractive imaging directly without any spectral filter. A spatial resolution of~100 nm is achieved using a~30 nm HHG source.