The shape transition between the vibrational U(5)and deformed c-unstable O(6)dynamical symmetries of sd interacting boson model has been investigated by considering a modified O(6)Hamiltonian,providing that the coeffi...The shape transition between the vibrational U(5)and deformed c-unstable O(6)dynamical symmetries of sd interacting boson model has been investigated by considering a modified O(6)Hamiltonian,providing that the coefficients of the Casimir operator of O(5)are N-dependent,where N is the total number of bosons.The modified O(6)Hamiltonian does not contain the number operator of the d boson,which is responsible for the vibrational motions.In addition,the deformation features can be achieved without using the SU(3)limit by adding to the O(6)dynamical symmetry the three-body interaction[QQQ]^(0),where Q is the O(6)symmetric quadrupole operator.Moreover,triaxiality can be generated through the inclusion of the cubic d-boson interaction[d+d+d+]^(3)·∣ddd∣^(3).The classical limit of the potential energy surface(PES),which represents the expected value of the total Hamiltonian in a coherent state,is studied and examined.The modified O(6)model is applied to the even–even^124-132 Xe isotopes.The parameters for the Hamiltonian and the PESs are calculated using a simulated search program to obtain the minimum root mean square deviation between the calculated and experimental excitation energies and B(E2)values for a number of low-lying levels.A good agreement between the calculations and experiment results is found.展开更多
文摘The shape transition between the vibrational U(5)and deformed c-unstable O(6)dynamical symmetries of sd interacting boson model has been investigated by considering a modified O(6)Hamiltonian,providing that the coefficients of the Casimir operator of O(5)are N-dependent,where N is the total number of bosons.The modified O(6)Hamiltonian does not contain the number operator of the d boson,which is responsible for the vibrational motions.In addition,the deformation features can be achieved without using the SU(3)limit by adding to the O(6)dynamical symmetry the three-body interaction[QQQ]^(0),where Q is the O(6)symmetric quadrupole operator.Moreover,triaxiality can be generated through the inclusion of the cubic d-boson interaction[d+d+d+]^(3)·∣ddd∣^(3).The classical limit of the potential energy surface(PES),which represents the expected value of the total Hamiltonian in a coherent state,is studied and examined.The modified O(6)model is applied to the even–even^124-132 Xe isotopes.The parameters for the Hamiltonian and the PESs are calculated using a simulated search program to obtain the minimum root mean square deviation between the calculated and experimental excitation energies and B(E2)values for a number of low-lying levels.A good agreement between the calculations and experiment results is found.