Vehicular pollution is becoming significant in urban areas because of increasing population. This is at ground level, so it gives high population exposure. In this study, Chembur, which is the most polluted area in Mu...Vehicular pollution is becoming significant in urban areas because of increasing population. This is at ground level, so it gives high population exposure. In this study, Chembur, which is the most polluted area in Mumbai city due to industrial and vehicular sources, is selected for vehicular pollution modeling using AMS/EPA Regulatory Model (AERMOD). Meteorological parameters, land use surface characteristics and source emission data are collected as required by AERMOD. The results of modelling depend upon reliability of input data and meteorological data has a vital role in the performance of the model. Generally, temporally and spatially interpolated meteorological data is used in modeling. This is generally collected from nearby meteorological station but this causes inaccuracy of the results. In this paper, the Weather Research and Forecasting (WRF) model has been used to generate onsite data on nine meteorological parameters. The modeling of six roads of Chembur has been performed using above meteorological data. This approach gives good results of traffic modeling. The results of AERMOD are compared with observed air quality which has contribution from all sources in the region and relative contribution of vehicular sources identified.展开更多
The objective of this research is to develop a tool for planning and managing the water quality of River Godavari. This is achieved by classifying the pollution levels of Godavari River into several categories using w...The objective of this research is to develop a tool for planning and managing the water quality of River Godavari. This is achieved by classifying the pollution levels of Godavari River into several categories using water quality index and a clustering approach that ensure simple but accurate information about the pollution levels and water characteristics at any point in Godavari River in Maharashtra. The derived water quality indices and clusters were then visualized by using a Geographical Information System to draw thematic maps of Godavari River, thus making GIS as a decision support system. The obtained maps may assist the decision makers in managing and controlling pollution in the Godavari River. This also provides an effective overview of those spots in the Godavari River where intensified monitoring activities are required. Consequently, the obtained results make a major contribution to the assessment of the State’s water quality monitoring network. Three significant groups (less polluted, moderately and highly polluted sites) were detected by Cluster Analysis method. The results of Discriminant Analysis revealed that five parameters?i.e.?pH, Dissolved Oxygen (DO), Faecal Coliform (FC), Total Coliform (TC) and Ammonical Nitrogen (NH3-N) were necessary for analysis in spatial variation. Using discriminant function developed in the analysis, 100% of the original sites were correctly classified.展开更多
文摘Vehicular pollution is becoming significant in urban areas because of increasing population. This is at ground level, so it gives high population exposure. In this study, Chembur, which is the most polluted area in Mumbai city due to industrial and vehicular sources, is selected for vehicular pollution modeling using AMS/EPA Regulatory Model (AERMOD). Meteorological parameters, land use surface characteristics and source emission data are collected as required by AERMOD. The results of modelling depend upon reliability of input data and meteorological data has a vital role in the performance of the model. Generally, temporally and spatially interpolated meteorological data is used in modeling. This is generally collected from nearby meteorological station but this causes inaccuracy of the results. In this paper, the Weather Research and Forecasting (WRF) model has been used to generate onsite data on nine meteorological parameters. The modeling of six roads of Chembur has been performed using above meteorological data. This approach gives good results of traffic modeling. The results of AERMOD are compared with observed air quality which has contribution from all sources in the region and relative contribution of vehicular sources identified.
文摘The objective of this research is to develop a tool for planning and managing the water quality of River Godavari. This is achieved by classifying the pollution levels of Godavari River into several categories using water quality index and a clustering approach that ensure simple but accurate information about the pollution levels and water characteristics at any point in Godavari River in Maharashtra. The derived water quality indices and clusters were then visualized by using a Geographical Information System to draw thematic maps of Godavari River, thus making GIS as a decision support system. The obtained maps may assist the decision makers in managing and controlling pollution in the Godavari River. This also provides an effective overview of those spots in the Godavari River where intensified monitoring activities are required. Consequently, the obtained results make a major contribution to the assessment of the State’s water quality monitoring network. Three significant groups (less polluted, moderately and highly polluted sites) were detected by Cluster Analysis method. The results of Discriminant Analysis revealed that five parameters?i.e.?pH, Dissolved Oxygen (DO), Faecal Coliform (FC), Total Coliform (TC) and Ammonical Nitrogen (NH3-N) were necessary for analysis in spatial variation. Using discriminant function developed in the analysis, 100% of the original sites were correctly classified.