期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Targeted Sub-Attomole Cancer Biomarker Detection Based on Phase Singularity 2D Nanomaterial-Enhanced Plasmonic Biosensor 被引量:3
1
作者 Yuye Wang Shuwen Zeng +11 位作者 aurelian crunteanu Zhenming Xie Georges Humbert Libo Ma Yuanyuan Wei Aude Brunel Barbara Bessette Jean-Christophe Orlianges Fabrice Lalloué Oliver GSchmidt Nanfang Yu Ho-Pui Ho 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期284-294,共11页
Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer,monitoring treatm... Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer,monitoring treatment and detecting relapse.Here,a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial.By precisely engineering the configuration with atomically thin materials,the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect.Based on our knowledge,it is the first experimental demonstration of a lateral position signal change>340μm at a sensing interface from all optical techniques.With this enhanced plasmonic effect,the detection limit has been experimentally demonstrated to be 10^(-15) mol L^(−1) for TNF-α cancer marker,which has been found in various human diseases including inflammatory diseases and different kinds of cancer.The as-reported novel integration of atomically thin Ge_(2)Sb_(2)Te_(5) with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics. 展开更多
关键词 2D nanomaterials Cancer marker detection Phase singularity Surface plasmon
在线阅读 下载PDF
Label-free biosensing with singular-phaseenhanced lateral position shift based on atomically thin plasmonic nanomaterials 被引量:1
2
作者 Shaodi Zhu Rodolphe Jaffiol +5 位作者 aurelian crunteanu Cyrille Vézy Sik-To Chan Wu Yuan Ho-Pui Ho Shuwen Zeng 《Light(Science & Applications)》 SCIE EI CSCD 2024年第5期810-822,共13页
Rapid plasmonic biosensing has attracted wide attention in early disease diagnosis and molecular biology research.However,it was still challenging for conventional angle-interrogating plasmonic sensors to obtain highe... Rapid plasmonic biosensing has attracted wide attention in early disease diagnosis and molecular biology research.However,it was still challenging for conventional angle-interrogating plasmonic sensors to obtain higher sensitivity without secondary amplifying labels such as plasmonic nanoparticles.To address this issue,we developed a plasmonic biosensor based on the enhanced lateral position shift by phase singularity.Such singularity presents as a sudden phase retardation at the dark point of reflection from resonating plasmonic substrate,leading to a giant position shift on reflected beam.Herein,for the first time,the atomically thin layer of Ge2Sb2Te5(GST)on silver nanofilm was demonstrated as a novel phase-response-enhancing plasmonic material.The GST layer was not only precisely engineered to singularize phase change but also served as a protective layer for active silver nanofilm.This new configuration has achieved a record-breaking largest position shift of 439.3μm measured in calibration experiments with an ultra-high sensitivity of 1.72×10^(8)nm RIU−1(refractive index unit).The detection limit was determined to be 6.97×10^(−7)RIU with a 0.12μm position resolution.Besides,a large figure of merit(FOM)of 4.54×10^(11)μm(RIU∙°)^(−1)was evaluated for such position shift interrogation,enabling the labelfree detection of trace amounts of biomolecules.In targeted biosensing experiments,the optimized sensor has successfully detected small cytokine biomarkers(TNF-αand IL-6)with the lowest concentration of 1×10^(−16)M.These two molecules are the key proinflammatory cancer markers in clinical diagnosis,which cannot be directly screened by current clinical techniques.To further validate the selectivity of our sensing systems,we also measured the affinity of integrin binding to arginylglycylaspartic acid(RGD)peptide(a key protein interaction in cell adhesion)with different Mn2+ion concentrations,ranging from 1 nM to 1 mM. 展开更多
关键词 diagnosis protective silver
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部