The shale deposits of Damodar Valley have received great attention since preliminary studies indicate their potential for shale gas. However, fundamental information allied to shale gas re- servoir characteristics are...The shale deposits of Damodar Valley have received great attention since preliminary studies indicate their potential for shale gas. However, fundamental information allied to shale gas re- servoir characteristics are still rare in India, as exploration is in the primary stage. In this study, Ba- rakar shale beds of eastern part of Jharia Basin are evaluated for gas reservoir characteristics. It is evident that Barakar shales are carbonaceous, silty, contains sub-angular flecks of quartz and mica, irregular hair-line fractures and showing lithological variations along the bedding planes, signifying terrestrial-fluviatile deposits under reducing environment. The values of TOC varies from 1.21 wt.% to 17.32 wt.%, indicating good source rock potentiality. The vitrinite, liptinite, inertinite and mineral matter ranging from 0.28 vol.% to 12.98 vol.%, 0.17 vol.% to 3.23 vol.%, 0.23 vol.% to 9.05 vol.%, and 74.74 vol.% to 99.10 vol.%, respectively. The ternary facies plot of maceral composition substan- tiated that Barakar shales are vitrinite rich and placed in the thermal-dry gas prone region. The low values of the surface area determined following different methods point towards low methane storage capacity, this is because of diagenesis and alterations of potash feldspar responsible for pore blocking effect. The pore size distribution signifying the micro to mesoporous nature, while Type II sorption curve with the H2 type of hysteresis pattern, specifies the heterogeneity in pore structure mainly combined-slit and bottle neck pores.展开更多
The low to medium-rank Tertiary coals from Meghalaya,India,are explored for the first time for their comprehensive micro-structural characterization using the FTIR and Raman spectroscopy.Further,results from these coa...The low to medium-rank Tertiary coals from Meghalaya,India,are explored for the first time for their comprehensive micro-structural characterization using the FTIR and Raman spectroscopy.Further,results from these coals are compared with the Permian medium and high-rank coals to understand the microstructural restyling during coalification and its controls on hydrocarbon generation.The coal samples are grouped based on the mean random vitrinite reflectance values to record the transformations in spectral attributes with increasing coal rank.The aliphatic carbon and the apparent aromaticity respond sharply to the first coalification jump(R:0.50%)during low to medium-rank transition and anchizonal metamorphism of the high-rank coals.Moreover,the Raman band intensity ratio changes during the first coalification jump but remains invari-able in the medium-rank coals and turns subtle again during the onset of pregraphitization in high-rank coals,revealing a polynomial trend with the coal metamorphism.The Rock-Eval hydrogen index and genetic potential also decline sharply at the first coalification jump.Besides,an attempt to comprehend the coal microstructural controls on the hydrocarbon poten-tial reveals that the Tertiary coals comprise highly reactive aliphatic functionalities in the type I-S kerogen,along with the low paleotemperature(74.59-112.28℃)may signify their potential to generate early-mature hydrocarbons.However,the presence of type II-II admixed kerogen,a lesser abundance of reactive moieties,and overall moderate paleotemperature(91.93-142.52℃)of the Permian medium-rank coals may imply their mixed hydrocarbon potential.Meanwhile,anchizonal metamorphism,polycondensed aromatic microstructure,and high values of paleotemperature(~334.25 to~366.79℃)of the high-rank coals indicate a negligible potential of producing any hydrocarbons.展开更多
The present study focuses on the inorganic geochemical features of the bituminous coal samples from the Raniganj and the Jharia Basins,as well as the anthracite samples from the Himalayan fold-thrust belts of Sikkim,I...The present study focuses on the inorganic geochemical features of the bituminous coal samples from the Raniganj and the Jharia Basins,as well as the anthracite samples from the Himalayan fold-thrust belts of Sikkim,India.The SiO_(2)content(48.05 wt%to 65.09 wt%and 35.92 wt%to 50.11 wt%in the bituminous and anthracite samples,respectively)and the ratio of Al_(2)O_(3)/TiO_(2)(6.97 to 17.03 in the bituminous coal samples and 10.34 to 20.07 in the anthracite samples)reveal the intermediate igneous source rock composition of the minerals.The ratio of the K_(2)O/Al_(2)O_(3)in the ash yield of the bituminous coal samples(0.03 to 0.09)may suggest the presence of kaolinite mixed with montmorillonite,while its range in the ash yield of the anthracite samples(0.16 to 0.27)may imply the presence of illite mixed with kaolinite.The chemical index of alteration values may suggest the moderate to strong chemical weathering of the source rock under sub-humid to humid climatic conditions.The plot of the bituminous coal samples in the A–CN–K diagram depicts the traditional weathering trend of parent rocks,but the anthracite samples plot near the illite feld and are a bit ofset from the weathering trend.This may imply the plausible infuences of the potassium-metasomatism at post coalifcation stages,which is further supported by high K_(2)O/Na_(2)O ratio(29.88–80.13).The Fourier transform infrared spectra further reveal the hydroxyl stretching intensity of illite in the anthracite samples substantiating the efect of the epigenetic potassium-metasomatism.The decrease in total kaolinite intensity/compound intensity of quartz and feldspar may provide additional evidence towards this epigenetic event.展开更多
基金Ministry of Coal for funding support of the project entitled "Shale gas potentiality eva luation of Damodar Basin of India" (Coal S & T grant: CE(Eo I)/30) under the research work has been carried out
文摘The shale deposits of Damodar Valley have received great attention since preliminary studies indicate their potential for shale gas. However, fundamental information allied to shale gas re- servoir characteristics are still rare in India, as exploration is in the primary stage. In this study, Ba- rakar shale beds of eastern part of Jharia Basin are evaluated for gas reservoir characteristics. It is evident that Barakar shales are carbonaceous, silty, contains sub-angular flecks of quartz and mica, irregular hair-line fractures and showing lithological variations along the bedding planes, signifying terrestrial-fluviatile deposits under reducing environment. The values of TOC varies from 1.21 wt.% to 17.32 wt.%, indicating good source rock potentiality. The vitrinite, liptinite, inertinite and mineral matter ranging from 0.28 vol.% to 12.98 vol.%, 0.17 vol.% to 3.23 vol.%, 0.23 vol.% to 9.05 vol.%, and 74.74 vol.% to 99.10 vol.%, respectively. The ternary facies plot of maceral composition substan- tiated that Barakar shales are vitrinite rich and placed in the thermal-dry gas prone region. The low values of the surface area determined following different methods point towards low methane storage capacity, this is because of diagenesis and alterations of potash feldspar responsible for pore blocking effect. The pore size distribution signifying the micro to mesoporous nature, while Type II sorption curve with the H2 type of hysteresis pattern, specifies the heterogeneity in pore structure mainly combined-slit and bottle neck pores.
文摘The low to medium-rank Tertiary coals from Meghalaya,India,are explored for the first time for their comprehensive micro-structural characterization using the FTIR and Raman spectroscopy.Further,results from these coals are compared with the Permian medium and high-rank coals to understand the microstructural restyling during coalification and its controls on hydrocarbon generation.The coal samples are grouped based on the mean random vitrinite reflectance values to record the transformations in spectral attributes with increasing coal rank.The aliphatic carbon and the apparent aromaticity respond sharply to the first coalification jump(R:0.50%)during low to medium-rank transition and anchizonal metamorphism of the high-rank coals.Moreover,the Raman band intensity ratio changes during the first coalification jump but remains invari-able in the medium-rank coals and turns subtle again during the onset of pregraphitization in high-rank coals,revealing a polynomial trend with the coal metamorphism.The Rock-Eval hydrogen index and genetic potential also decline sharply at the first coalification jump.Besides,an attempt to comprehend the coal microstructural controls on the hydrocarbon poten-tial reveals that the Tertiary coals comprise highly reactive aliphatic functionalities in the type I-S kerogen,along with the low paleotemperature(74.59-112.28℃)may signify their potential to generate early-mature hydrocarbons.However,the presence of type II-II admixed kerogen,a lesser abundance of reactive moieties,and overall moderate paleotemperature(91.93-142.52℃)of the Permian medium-rank coals may imply their mixed hydrocarbon potential.Meanwhile,anchizonal metamorphism,polycondensed aromatic microstructure,and high values of paleotemperature(~334.25 to~366.79℃)of the high-rank coals indicate a negligible potential of producing any hydrocarbons.
文摘The present study focuses on the inorganic geochemical features of the bituminous coal samples from the Raniganj and the Jharia Basins,as well as the anthracite samples from the Himalayan fold-thrust belts of Sikkim,India.The SiO_(2)content(48.05 wt%to 65.09 wt%and 35.92 wt%to 50.11 wt%in the bituminous and anthracite samples,respectively)and the ratio of Al_(2)O_(3)/TiO_(2)(6.97 to 17.03 in the bituminous coal samples and 10.34 to 20.07 in the anthracite samples)reveal the intermediate igneous source rock composition of the minerals.The ratio of the K_(2)O/Al_(2)O_(3)in the ash yield of the bituminous coal samples(0.03 to 0.09)may suggest the presence of kaolinite mixed with montmorillonite,while its range in the ash yield of the anthracite samples(0.16 to 0.27)may imply the presence of illite mixed with kaolinite.The chemical index of alteration values may suggest the moderate to strong chemical weathering of the source rock under sub-humid to humid climatic conditions.The plot of the bituminous coal samples in the A–CN–K diagram depicts the traditional weathering trend of parent rocks,but the anthracite samples plot near the illite feld and are a bit ofset from the weathering trend.This may imply the plausible infuences of the potassium-metasomatism at post coalifcation stages,which is further supported by high K_(2)O/Na_(2)O ratio(29.88–80.13).The Fourier transform infrared spectra further reveal the hydroxyl stretching intensity of illite in the anthracite samples substantiating the efect of the epigenetic potassium-metasomatism.The decrease in total kaolinite intensity/compound intensity of quartz and feldspar may provide additional evidence towards this epigenetic event.