Cloud computing is a technology that provides secure storage space for the customer’s massive data and gives them the facility to retrieve and transmit their data efficiently through a secure network in which encrypt...Cloud computing is a technology that provides secure storage space for the customer’s massive data and gives them the facility to retrieve and transmit their data efficiently through a secure network in which encryption and decryption algorithms are being deployed.In cloud computation,data processing,storage,and transmission can be done through laptops andmobile devices.Data Storing in cloud facilities is expanding each day and data is the most significant asset of clients.The important concern with the transmission of information to the cloud is security because there is no perceivability of the client’s data.They have to be dependent on cloud service providers for assurance of the platform’s security.Data security and privacy issues reduce the progression of cloud computing and add complexity.Nowadays;most of the data that is stored on cloud servers is in the form of images and photographs,which is a very confidential form of data that requires secured transmission.In this research work,a public key cryptosystem is being implemented to store,retrieve and transmit information in cloud computation through a modified Rivest-Shamir-Adleman(RSA)algorithm for the encryption and decryption of data.The implementation of a modified RSA algorithm results guaranteed the security of data in the cloud environment.To enhance the user data security level,a neural network is used for user authentication and recognition.Moreover;the proposed technique develops the performance of detection as a loss function of the bounding box.The Faster Region-Based Convolutional Neural Network(Faster R-CNN)gets trained on images to identify authorized users with an accuracy of 99.9%on training.展开更多
Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pep...Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pepper and Gaussian noises,which are added to the MR images during the acquisition process.In the presence of these noises,medical experts are facing problems in diagnosing diseases from noisy brain MR images.Therefore,we have proposed a de-noising method by mixing concatenation,and residual deep learning techniques called the MCR de-noising method.Our proposed MCR method is to eliminate salt&pepper and gaussian noises as much as possible from the brain MRI images.The MCR method has been trained and tested on the noise quantity levels 2%to 20%for both salt&pepper and gaussian noise.The experiments have been done on publically available brain MRI image datasets,which can easily be accessible in the experiments and result section.The Structure Similarity Index Measure(SSIM)and Peak Signal-to-Noise Ratio(PSNR)calculate the similarity score between the denoised images by the proposed MCR method and the original clean images.Also,the Mean Squared Error(MSE)measures the error or difference between generated denoised and the original images.The proposed MCR denoising method has a 0.9763 SSIM score,84.3182 PSNR,and 0.0004 MSE for salt&pepper noise;similarly,0.7402 SSIM score,72.7601 PSNR,and 0.0041 MSE for Gaussian noise at the highest level of 20%noise.In the end,we have compared the MCR method with the state-of-the-art de-noising filters such as median and wiener de-noising filters.展开更多
基金This work is supported by the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2019JM-348).
文摘Cloud computing is a technology that provides secure storage space for the customer’s massive data and gives them the facility to retrieve and transmit their data efficiently through a secure network in which encryption and decryption algorithms are being deployed.In cloud computation,data processing,storage,and transmission can be done through laptops andmobile devices.Data Storing in cloud facilities is expanding each day and data is the most significant asset of clients.The important concern with the transmission of information to the cloud is security because there is no perceivability of the client’s data.They have to be dependent on cloud service providers for assurance of the platform’s security.Data security and privacy issues reduce the progression of cloud computing and add complexity.Nowadays;most of the data that is stored on cloud servers is in the form of images and photographs,which is a very confidential form of data that requires secured transmission.In this research work,a public key cryptosystem is being implemented to store,retrieve and transmit information in cloud computation through a modified Rivest-Shamir-Adleman(RSA)algorithm for the encryption and decryption of data.The implementation of a modified RSA algorithm results guaranteed the security of data in the cloud environment.To enhance the user data security level,a neural network is used for user authentication and recognition.Moreover;the proposed technique develops the performance of detection as a loss function of the bounding box.The Faster Region-Based Convolutional Neural Network(Faster R-CNN)gets trained on images to identify authorized users with an accuracy of 99.9%on training.
文摘Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pepper and Gaussian noises,which are added to the MR images during the acquisition process.In the presence of these noises,medical experts are facing problems in diagnosing diseases from noisy brain MR images.Therefore,we have proposed a de-noising method by mixing concatenation,and residual deep learning techniques called the MCR de-noising method.Our proposed MCR method is to eliminate salt&pepper and gaussian noises as much as possible from the brain MRI images.The MCR method has been trained and tested on the noise quantity levels 2%to 20%for both salt&pepper and gaussian noise.The experiments have been done on publically available brain MRI image datasets,which can easily be accessible in the experiments and result section.The Structure Similarity Index Measure(SSIM)and Peak Signal-to-Noise Ratio(PSNR)calculate the similarity score between the denoised images by the proposed MCR method and the original clean images.Also,the Mean Squared Error(MSE)measures the error or difference between generated denoised and the original images.The proposed MCR denoising method has a 0.9763 SSIM score,84.3182 PSNR,and 0.0004 MSE for salt&pepper noise;similarly,0.7402 SSIM score,72.7601 PSNR,and 0.0041 MSE for Gaussian noise at the highest level of 20%noise.In the end,we have compared the MCR method with the state-of-the-art de-noising filters such as median and wiener de-noising filters.