期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Robust Skin Cancer Detection through CNN-Transformer-GRU Fusion and Generative Adversarial Network Based Data Augmentation
1
作者 Alex Varghese Achin Jain +7 位作者 Mohammed Inamur Rahman Mudassir Khan Arun Kumar Dubey Iqrar Ahmed Yash Prakash Narayan arvind panwar Anurag Choubey Saurav Mallik 《Computer Modeling in Engineering & Sciences》 2025年第8期1767-1791,共25页
Skin cancer remains a significant global health challenge,and early detection is crucial to improving patient outcomes.This study presents a novel deep learning framework that combines Convolutional Neural Networks(CN... Skin cancer remains a significant global health challenge,and early detection is crucial to improving patient outcomes.This study presents a novel deep learning framework that combines Convolutional Neural Networks(CNNs),Transformers,and Gated Recurrent Units(GRUs)for robust skin cancer classification.To address data set imbalance,we employ StyleGAN3-based synthetic data augmentation alongside traditional techniques.The hybrid architecture effectively captures both local and global dependencies in dermoscopic images,while the GRU component models sequential patterns.Evaluated on the HAM10000 dataset,the proposed model achieves an accuracy of 90.61%,outperforming baseline architectures such as VGG16 and ResNet.Our system also demonstrates superior precision(91.11%),recall(95.28%),and AUC(0.97),highlighting its potential as a reliable diagnostic tool for the detection of melanoma.This work advances automated skin cancer diagnosis by addressing critical challenges related to class imbalance and limited generalization in medical imaging. 展开更多
关键词 Skin cancer detection deep learning CNN TRANSFORMER GRU StyleGAN3
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部