Atrazine,a persistent triazine herbicide,poses environmental and health risks.This study examines the synergis-tic remediation of atrazine-contaminated soil using green manure plant(GMP)hairy vetch(Vicia villosa Roth,...Atrazine,a persistent triazine herbicide,poses environmental and health risks.This study examines the synergis-tic remediation of atrazine-contaminated soil using green manure plant(GMP)hairy vetch(Vicia villosa Roth,VV)and the exogenous atrazine-degrading bacterium Arthrobacter sp.ATR1.Soil samples contaminated with atrazine at 5 and 20 mg/kg were treated with control(CK),ATR1(CKatr),hairy vetch(VV),and combined hairy vetch and ATR1 remediation(VVatr).The results indicated that the VVatr treatment exhibited the most effective atrazine removal,achieving enhancements of 56.12%at 5 mg/kg and 54.51%at 20 mg/kg compared to CK after 28 days.Soil enzyme activities,including urease,sucrase,and alkaline phosphatase,were significantly elevated in the VV and VVatr treatments,contributing to improved soil quality.Additionally,the CKatr,VV,and VVatr treat-ments enhanced bacterial diversity and richness while altering the microbial community structure.The VV and VVatr treatments notably enriched indigenous atrazine-degrading bacteria and nitrogen-fixing bacteria in the rhizosphere.This microbial enrichment upregulated the Atrazine degradation and Nitrogen metabolism pathways,facilitating both atrazine removal and nitrogen cycling in the soil.And VVatr treatment promoted the stability of the microbial network and enhanced the cooperative relationship between key indigenous atrazine-degrading and nitrogen-fixing bacteria.These findings explain the mechanism of plantmicrobe combined remediation of atrazine-contaminated soil from the perspective of rhizosphere microorganisms and offer a theoretical basis for the practical application of this method.展开更多
The solid–liquid equilibria(SLE)for binary and ternary systems consisting of N-Vinylpyrrolidone(NVP),2-Pyrrolidone(2-P)and water are measured.The phase diagrams of NVP(1)+2-P(2),NVP(1)+water(2),NVP(1)+2-P(2)+1 wt%wat...The solid–liquid equilibria(SLE)for binary and ternary systems consisting of N-Vinylpyrrolidone(NVP),2-Pyrrolidone(2-P)and water are measured.The phase diagrams of NVP(1)+2-P(2),NVP(1)+water(2),NVP(1)+2-P(2)+1 wt%water(3)and NVP(1)+2-P(2)+2 wt%water(3)are identified as simple eutectic type with the eutectic points at 263.75 K(x_(1E)=0.5427),251.65 K(x_(1E)=0.3722),260.25 K(x_(1E)=0.5031)and256.55 K(x_(1E)=0.4684),respectively.The phase diagram of 2-P(1)+water(2)has two eutectic points(x_(1E)=0.1236,T_E=259.15 K and x_(1E)=0.7831,T_E=286.15 K)and one congruent melting point(x_(1C)=0.4997,T_C=303.55 K)because of the generation of a congruently melting addition compound:2-P·H_2O.The ideal solubility and the UNIFAC models were applied to predict the SLE,while the Wilson and NRTL models were employed in correlating the experimental data.The best correlation of the SLE data has been obtained by the Wilson model for the binary system of NVP+2-P.The UNIFAC model gives more satisfactory predictions than the ideal solubility model.展开更多
基金supported by the National Key Research and Development Program of China(No.2024YFD1701101)the Fund for Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28010503)+2 种基金the National Natural Science Foundation of China(No.31971515)the Fund for National Key Research and Development Plan of China(No.2019YFC1804100)the Fund for Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(No.CAAS-ZDRW202110).
文摘Atrazine,a persistent triazine herbicide,poses environmental and health risks.This study examines the synergis-tic remediation of atrazine-contaminated soil using green manure plant(GMP)hairy vetch(Vicia villosa Roth,VV)and the exogenous atrazine-degrading bacterium Arthrobacter sp.ATR1.Soil samples contaminated with atrazine at 5 and 20 mg/kg were treated with control(CK),ATR1(CKatr),hairy vetch(VV),and combined hairy vetch and ATR1 remediation(VVatr).The results indicated that the VVatr treatment exhibited the most effective atrazine removal,achieving enhancements of 56.12%at 5 mg/kg and 54.51%at 20 mg/kg compared to CK after 28 days.Soil enzyme activities,including urease,sucrase,and alkaline phosphatase,were significantly elevated in the VV and VVatr treatments,contributing to improved soil quality.Additionally,the CKatr,VV,and VVatr treat-ments enhanced bacterial diversity and richness while altering the microbial community structure.The VV and VVatr treatments notably enriched indigenous atrazine-degrading bacteria and nitrogen-fixing bacteria in the rhizosphere.This microbial enrichment upregulated the Atrazine degradation and Nitrogen metabolism pathways,facilitating both atrazine removal and nitrogen cycling in the soil.And VVatr treatment promoted the stability of the microbial network and enhanced the cooperative relationship between key indigenous atrazine-degrading and nitrogen-fixing bacteria.These findings explain the mechanism of plantmicrobe combined remediation of atrazine-contaminated soil from the perspective of rhizosphere microorganisms and offer a theoretical basis for the practical application of this method.
文摘The solid–liquid equilibria(SLE)for binary and ternary systems consisting of N-Vinylpyrrolidone(NVP),2-Pyrrolidone(2-P)and water are measured.The phase diagrams of NVP(1)+2-P(2),NVP(1)+water(2),NVP(1)+2-P(2)+1 wt%water(3)and NVP(1)+2-P(2)+2 wt%water(3)are identified as simple eutectic type with the eutectic points at 263.75 K(x_(1E)=0.5427),251.65 K(x_(1E)=0.3722),260.25 K(x_(1E)=0.5031)and256.55 K(x_(1E)=0.4684),respectively.The phase diagram of 2-P(1)+water(2)has two eutectic points(x_(1E)=0.1236,T_E=259.15 K and x_(1E)=0.7831,T_E=286.15 K)and one congruent melting point(x_(1C)=0.4997,T_C=303.55 K)because of the generation of a congruently melting addition compound:2-P·H_2O.The ideal solubility and the UNIFAC models were applied to predict the SLE,while the Wilson and NRTL models were employed in correlating the experimental data.The best correlation of the SLE data has been obtained by the Wilson model for the binary system of NVP+2-P.The UNIFAC model gives more satisfactory predictions than the ideal solubility model.