Although tension-compression(T-C)asymmetry in yield strength was rarely documented in coarse-grained face centered cubic(FCC)metals as critical resolved shear stress(CRSS)for dislocation slip differs little between te...Although tension-compression(T-C)asymmetry in yield strength was rarely documented in coarse-grained face centered cubic(FCC)metals as critical resolved shear stress(CRSS)for dislocation slip differs little between tension and compression,the T-C asymmetry in strength,i.e.,higher strength when loaded in compression than in tension,was reported in some FCC high entropy alloys(HEAs)due to twinning and phase transitions activated at high strain regimes in compression.In this paper,we demonstrate a reversed and atypical tension-compression asymmetry(tensile strength markedly exceeds compressive strength)in a non-equiatomic FCC Ni_(2)CoFeV_(0.5)Mo_(0.2) medium entropy alloy(MEA)under dynamic loading,wherein dislocation slip governs dynamic deformation without twins or phase transitions.The asymme-try can be primarily interpreted as higher CRSS and more hard slip modes(lower average Schmid factor)activated in grains under dynamic tension than compression.Besides,larger strain rate sensitivity in dy-namic tension overwhelmingly contributes to the higher flow stress,thanks to the occurrence of more immobile Lomer-locks,narrower spacing of planar slip bands and higher dislocation density.This finding may provide some insights into designing MEAs/HEAs with desired properties under extreme conditions such as blast,impact and crash.展开更多
DNS Protocol was originally designed with no security protection in place. Subsequent DNSSEC added a layer of trust on top of DNS by providing authentication, but it still did not address issues such as Do S/DDo S att...DNS Protocol was originally designed with no security protection in place. Subsequent DNSSEC added a layer of trust on top of DNS by providing authentication, but it still did not address issues such as Do S/DDo S attacks and deployment difficulties. Blockchain technology offers an innovative perspective to tackle those challenges. By reviewing and analyzing two prevail blockchain-based DNS alternatives(Namecoin and Blockstack), it is concluded that although blockchain presently have problems that have to be solved, it is a promising approach to build decentralized, secure and human-friendly naming systems.展开更多
The pronounced brittleness of hard Laves phase intermetallics is detrimental to their tribological properties at room temperature.In this study,we utilized a heterogeneous structure to engineer an ultrastrong dual-pha...The pronounced brittleness of hard Laves phase intermetallics is detrimental to their tribological properties at room temperature.In this study,we utilized a heterogeneous structure to engineer an ultrastrong dual-phase(Laves+B2)AlCoFeNiNb high-entropy alloy that exhibits a low wear rate(3.82×10-6 mm3/(N·m))at room temperature.This wear resistance in the ball-on-disc sliding friction test with the counterpart of Al2O3 balls stems from the activated deformation ability in the ultrafine Laves lamellae under heterogeneous interface constraints.Furthermore,as tribological stress intensifies,the surface deformation mechanism transitions from dislocation slip on the basal and pyramidal planes to a unique combination of local shear and grain rotation within the Laves phase.Our study illuminates fresh perspectives for mitigating the embrittling effect of Laves phase intermetallics under tribological loading and for the development of wear-resistant materials.展开更多
基金the National Key R&D Program of China(No.2017YFA0204403)the National Natural Science Foundation of China(Nos.51971112 and51225102)+2 种基金the Fundamental Research Funds for the Central Universities(No.30919011405)X.Chen would like to acknowledge the finan-cial support from the National Natural Science Foundation of China(Nos.52001165 and 51931003)the Natural Science Foundation of Jiangsu Province,China(No.BK20200475),and the Fundamen-tal Research Funds for the Central Universities(No.30921011215).
文摘Although tension-compression(T-C)asymmetry in yield strength was rarely documented in coarse-grained face centered cubic(FCC)metals as critical resolved shear stress(CRSS)for dislocation slip differs little between tension and compression,the T-C asymmetry in strength,i.e.,higher strength when loaded in compression than in tension,was reported in some FCC high entropy alloys(HEAs)due to twinning and phase transitions activated at high strain regimes in compression.In this paper,we demonstrate a reversed and atypical tension-compression asymmetry(tensile strength markedly exceeds compressive strength)in a non-equiatomic FCC Ni_(2)CoFeV_(0.5)Mo_(0.2) medium entropy alloy(MEA)under dynamic loading,wherein dislocation slip governs dynamic deformation without twins or phase transitions.The asymme-try can be primarily interpreted as higher CRSS and more hard slip modes(lower average Schmid factor)activated in grains under dynamic tension than compression.Besides,larger strain rate sensitivity in dy-namic tension overwhelmingly contributes to the higher flow stress,thanks to the occurrence of more immobile Lomer-locks,narrower spacing of planar slip bands and higher dislocation density.This finding may provide some insights into designing MEAs/HEAs with desired properties under extreme conditions such as blast,impact and crash.
文摘DNS Protocol was originally designed with no security protection in place. Subsequent DNSSEC added a layer of trust on top of DNS by providing authentication, but it still did not address issues such as Do S/DDo S attacks and deployment difficulties. Blockchain technology offers an innovative perspective to tackle those challenges. By reviewing and analyzing two prevail blockchain-based DNS alternatives(Namecoin and Blockstack), it is concluded that although blockchain presently have problems that have to be solved, it is a promising approach to build decentralized, secure and human-friendly naming systems.
基金supports from the National Natural Science Foundation of China(Grant nos.52371068,51931003,52301157,and 52001165)Natural Science Foundation of Jiangsu Province,China(Grant nos.BK20200475 and BK20220965)+2 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant no.2022ZB251)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDB0470101)the Fundamental Research Funds for the Central Universities(Grant nos.30921011215 and 30922010401).
文摘The pronounced brittleness of hard Laves phase intermetallics is detrimental to their tribological properties at room temperature.In this study,we utilized a heterogeneous structure to engineer an ultrastrong dual-phase(Laves+B2)AlCoFeNiNb high-entropy alloy that exhibits a low wear rate(3.82×10-6 mm3/(N·m))at room temperature.This wear resistance in the ball-on-disc sliding friction test with the counterpart of Al2O3 balls stems from the activated deformation ability in the ultrafine Laves lamellae under heterogeneous interface constraints.Furthermore,as tribological stress intensifies,the surface deformation mechanism transitions from dislocation slip on the basal and pyramidal planes to a unique combination of local shear and grain rotation within the Laves phase.Our study illuminates fresh perspectives for mitigating the embrittling effect of Laves phase intermetallics under tribological loading and for the development of wear-resistant materials.