Aging and regeneration represent complex biological phenomena that have long captivated the scientific community.To fully comprehend these processes,it is essential to investigate molecular dynamics through a lens tha...Aging and regeneration represent complex biological phenomena that have long captivated the scientific community.To fully comprehend these processes,it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions.Conventional omics methodologies,such as genomics and transcriptomics,have been instrumental in identifying critical molecular facets of aging and regeneration.However,these methods are somewhat limited,constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations.The advent of emerging spatiotemporal multi-omics approaches,encompassing transcriptomics,proteomics,metabolomics,and epigenomics,furnishes comprehensive insights into these intricate molecular dynamics.These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells,tissues,and organs,thereby offering an in-depth understanding of the fundamental mechanisms at play.This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research.It underscores how these methodologies augment our comprehension of molecular dynamics,cellular interactions,and signaling pathways.Initially,the review delineates the foundational principles underpinning these methods,followed by an evaluation of their recent applications within the field.The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field.Indubitably,spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration,thus charting a course toward potential therapeutic innovations.展开更多
Tissue-engineered cartilage(TEC)remains a potential alternative for the repair of articular cartilage defects.However,there has been a significant different between the properties of TEC and those of natural cartilage...Tissue-engineered cartilage(TEC)remains a potential alternative for the repair of articular cartilage defects.However,there has been a significant different between the properties of TEC and those of natural cartilage.Studies have shown that mechanical stimulation such as compressive load can help regulate matrix remodelling in TEC,thus affecting its biomechanical properties.However,the influences of shear induced from the tissue fluid phase have not been well studied and may play an important role in tissue regeneration especially when integrated with the compressive load.Therefore,the aim of this study was to quantitatively investigate the effects of combined loading mechanisms on TEC in vitro.A bespoke biosimulator was built to incorporate the coupled motion of compression,friction and shear.The specimens,encapsulating freshly isolated rabbit chondrocytes in a hydrogel,were cultured within the biosimulator under various mechanical stimulations for 4 weeks,and the tissue activity,matrix contents and the mechanical properties were examined.Study groups were categorized according to different mechanical stimulation combinations,including strain(5-20%at 5%intervals)and frequency(0.25 Hz,0.5 Hz,1 Hz),and the effects on tissue behaviour were investigated.During the dynamic culture process,a combined load was applied to simulate the combined effects of compression,friction and shear on articular cartilage during human movement.The results indicated that a larger strain and higher frequency were more favourable for the specimen in terms of the cell proliferation and extracellular matrix synthesis.Moreover,the combined mechanical stimulation was more beneficial to matrix remodelling than the single loading motion.However,the contribution of the combined mechanical stimulation to the engineered cartilaginous tissue matrix was not sufficient to impede biodegradation of the tissue with culture time.展开更多
3D printing technology is an emerging technology.It constructs solid bodies by stacking materials layer by layer,and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and struct...3D printing technology is an emerging technology.It constructs solid bodies by stacking materials layer by layer,and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients.The field of life sciences has received a great deal of attention.However,different 3D printing technologies and materials have their advantages and disadvantages,and there are limitations in clinical application.In this paper,the technology,materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed,and the future development trends and challenges in this field are prospected.展开更多
基金supported by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2023R01002)the National Natural Science Foundation of China(82271629,82301790)。
文摘Aging and regeneration represent complex biological phenomena that have long captivated the scientific community.To fully comprehend these processes,it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions.Conventional omics methodologies,such as genomics and transcriptomics,have been instrumental in identifying critical molecular facets of aging and regeneration.However,these methods are somewhat limited,constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations.The advent of emerging spatiotemporal multi-omics approaches,encompassing transcriptomics,proteomics,metabolomics,and epigenomics,furnishes comprehensive insights into these intricate molecular dynamics.These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells,tissues,and organs,thereby offering an in-depth understanding of the fundamental mechanisms at play.This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research.It underscores how these methodologies augment our comprehension of molecular dynamics,cellular interactions,and signaling pathways.Initially,the review delineates the foundational principles underpinning these methods,followed by an evaluation of their recent applications within the field.The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field.Indubitably,spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration,thus charting a course toward potential therapeutic innovations.
基金The work was supported by National Key R&D Program of China[2018YFE0207900]Key R&D Program of Guangdong Province[2018B090906001]the Fundamental Research Funds for the Central Universities and the Youth Innovation Team of Shaanxi Universities and the EU via the H2020-MSCA-RISE-2016 program[734156].
文摘Tissue-engineered cartilage(TEC)remains a potential alternative for the repair of articular cartilage defects.However,there has been a significant different between the properties of TEC and those of natural cartilage.Studies have shown that mechanical stimulation such as compressive load can help regulate matrix remodelling in TEC,thus affecting its biomechanical properties.However,the influences of shear induced from the tissue fluid phase have not been well studied and may play an important role in tissue regeneration especially when integrated with the compressive load.Therefore,the aim of this study was to quantitatively investigate the effects of combined loading mechanisms on TEC in vitro.A bespoke biosimulator was built to incorporate the coupled motion of compression,friction and shear.The specimens,encapsulating freshly isolated rabbit chondrocytes in a hydrogel,were cultured within the biosimulator under various mechanical stimulations for 4 weeks,and the tissue activity,matrix contents and the mechanical properties were examined.Study groups were categorized according to different mechanical stimulation combinations,including strain(5-20%at 5%intervals)and frequency(0.25 Hz,0.5 Hz,1 Hz),and the effects on tissue behaviour were investigated.During the dynamic culture process,a combined load was applied to simulate the combined effects of compression,friction and shear on articular cartilage during human movement.The results indicated that a larger strain and higher frequency were more favourable for the specimen in terms of the cell proliferation and extracellular matrix synthesis.Moreover,the combined mechanical stimulation was more beneficial to matrix remodelling than the single loading motion.However,the contribution of the combined mechanical stimulation to the engineered cartilaginous tissue matrix was not sufficient to impede biodegradation of the tissue with culture time.
基金funded by Versus Arthritis UK(Grant No.21977)European Commission via a H2020-MSCA-RISE programme(BAMOS,Grant No.734156)+1 种基金Innovative UK via Newton Fund(Grant No.102872)Engineering and Physical Science Research Council(EPSRC)via DTP CASE programme(Grant No.EP/T517793/1).
文摘3D printing technology is an emerging technology.It constructs solid bodies by stacking materials layer by layer,and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients.The field of life sciences has received a great deal of attention.However,different 3D printing technologies and materials have their advantages and disadvantages,and there are limitations in clinical application.In this paper,the technology,materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed,and the future development trends and challenges in this field are prospected.