Lithium-ion batteries(LIBs)have evolved into the mainstream power source of ene rgy sto rage equipment by reason of their advantages such as high energy density,high power,long cycle life and less pollution.With the e...Lithium-ion batteries(LIBs)have evolved into the mainstream power source of ene rgy sto rage equipment by reason of their advantages such as high energy density,high power,long cycle life and less pollution.With the expansion of their applications in deep-sea exploration,aerospace and military equipment,special working conditions have placed higher demands on the low-temperature performance of LIBs.However,at low temperatures,the severe polarization and inferior electrochemical activity of electrode materials cause the acute capacity fading upon cycling,which greatly hindered the further development of LIBs.In this review,we summarize the recent important progress of LIBs in low-temperature operations and introduce the key methods and the related action mechanisms for enhancing the capacity of the various cathode and anode materials.It aims to promote the development of high-performance electrode materials and broaden the application range of LIBs.展开更多
MnS as anode material for sodium-ion batteries(SIBs)has recently attracted great attention because of the high theoretical capacity,great natural abundance,and low cost.However,it suffers from inferior electrical cond...MnS as anode material for sodium-ion batteries(SIBs)has recently attracted great attention because of the high theoretical capacity,great natural abundance,and low cost.However,it suffers from inferior electrical conductivity and large volume expansion during the charge/discharge process,leading to tremendous damage of electrodes and subsequently fast capacity fading.To mitigate these issues,herein,a three-dimensional(3D)interlaced carbon nanotubes(CNTs)threaded into or between MnS hollow microspheres(hollow MnS/CNTs composite)has been designed and synthesized as an enhanced anode material.It can effectively improve the electrical conductivity,buffer the volume change,and maintain the integrity of the electrode during the charging and discharging process based on the synergistic interaction and the integrative structure.Therefore,when evaluated as anode for SIBs,the hollow MnS/CNTs electrode displays enhanced reve rsible capacity(275 mAh/g at 100 mA/g after 100 cycles),which is much better than that of pure MnS electrode(25 mAh/g at 100 mA/g after 100 cycles)prepared without the addition of CNTs.Even increasing the current density to 500 mA/g,the hollow MnS/CNTs electrode still delivers a five times higher reversible capacity than that of the pure MnS electrode.The rate performance of the hollow MnS/CNTs electrode is also superior to that of pure MnS electrode at various current densities from 50 mA/g to 1000 mA/g.展开更多
Bi draws increasing attention as anode materials for lithium-ion batteries and sodium-ion batteries due to its unique layered crystal structure,which is in favor of achieving fast ionic diffusion kinetics during cycli...Bi draws increasing attention as anode materials for lithium-ion batteries and sodium-ion batteries due to its unique layered crystal structure,which is in favor of achieving fast ionic diffusion kinetics during cycling.However,the dramatic volume expansion upon lithiation/sodiation and an insufficient theoretical capacity of Bi greatly hinder its practical application.Herein,we report the Fe_(2 )O_(3) nanoparticle-pinning Bi-encapsulated carbon fiber composites through the electrospinning technique.The introduction of Fe_(2 )O_(3) nanoparticles can prevent the growth and aggregation of Bi nanoparticles during synthetic and cycling processes,re s pectively.Fe_(2)O_(3) with high specific capacity also contributes to the specific capacity of the composites.Consequently,the as-prepared Bi-Fe_(2)O_(3)/carbon fiber composite exhibits outstanding long-term stability,which delivers reversible capacities 504 and 175 mAh/g after1000 cycles at 1 A/g for lithium-ion and sodium-ion batteries,respectively.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,Nos.51772205,51572192,51772208,51472179)the General Program of Municipal Natural Science Foundation of Tianjin(Nos.17JCYBJC17000,17JCYBJC22700)。
文摘Lithium-ion batteries(LIBs)have evolved into the mainstream power source of ene rgy sto rage equipment by reason of their advantages such as high energy density,high power,long cycle life and less pollution.With the expansion of their applications in deep-sea exploration,aerospace and military equipment,special working conditions have placed higher demands on the low-temperature performance of LIBs.However,at low temperatures,the severe polarization and inferior electrochemical activity of electrode materials cause the acute capacity fading upon cycling,which greatly hindered the further development of LIBs.In this review,we summarize the recent important progress of LIBs in low-temperature operations and introduce the key methods and the related action mechanisms for enhancing the capacity of the various cathode and anode materials.It aims to promote the development of high-performance electrode materials and broaden the application range of LIBs.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.51772205,51572192,51772208,51472179)the General Program of Municipal Natural Science Foundation of Tianjin(Nos.17JCYBJC17000,17JCYBJC22700)。
文摘MnS as anode material for sodium-ion batteries(SIBs)has recently attracted great attention because of the high theoretical capacity,great natural abundance,and low cost.However,it suffers from inferior electrical conductivity and large volume expansion during the charge/discharge process,leading to tremendous damage of electrodes and subsequently fast capacity fading.To mitigate these issues,herein,a three-dimensional(3D)interlaced carbon nanotubes(CNTs)threaded into or between MnS hollow microspheres(hollow MnS/CNTs composite)has been designed and synthesized as an enhanced anode material.It can effectively improve the electrical conductivity,buffer the volume change,and maintain the integrity of the electrode during the charging and discharging process based on the synergistic interaction and the integrative structure.Therefore,when evaluated as anode for SIBs,the hollow MnS/CNTs electrode displays enhanced reve rsible capacity(275 mAh/g at 100 mA/g after 100 cycles),which is much better than that of pure MnS electrode(25 mAh/g at 100 mA/g after 100 cycles)prepared without the addition of CNTs.Even increasing the current density to 500 mA/g,the hollow MnS/CNTs electrode still delivers a five times higher reversible capacity than that of the pure MnS electrode.The rate performance of the hollow MnS/CNTs electrode is also superior to that of pure MnS electrode at various current densities from 50 mA/g to 1000 mA/g.
基金financial support by the National Natural Science Foundation of China (NSFC,Nos.52073212,51772205,51772208)General Program of Municipal Natural Science Foundation of Tianjin (Nos.17JCYBJC17000,17JCYBJC22700)。
文摘Bi draws increasing attention as anode materials for lithium-ion batteries and sodium-ion batteries due to its unique layered crystal structure,which is in favor of achieving fast ionic diffusion kinetics during cycling.However,the dramatic volume expansion upon lithiation/sodiation and an insufficient theoretical capacity of Bi greatly hinder its practical application.Herein,we report the Fe_(2 )O_(3) nanoparticle-pinning Bi-encapsulated carbon fiber composites through the electrospinning technique.The introduction of Fe_(2 )O_(3) nanoparticles can prevent the growth and aggregation of Bi nanoparticles during synthetic and cycling processes,re s pectively.Fe_(2)O_(3) with high specific capacity also contributes to the specific capacity of the composites.Consequently,the as-prepared Bi-Fe_(2)O_(3)/carbon fiber composite exhibits outstanding long-term stability,which delivers reversible capacities 504 and 175 mAh/g after1000 cycles at 1 A/g for lithium-ion and sodium-ion batteries,respectively.