期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Machine learning in geosciences and remote sensing 被引量:45
1
作者 David J.Lary Amir H.Alavi +1 位作者 Amir H.Gandomi annette l.walker 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期3-10,共8页
Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorith... Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficultto-program applications, and software applications. It is a collection of a variety of algorithms(e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems. 展开更多
关键词 Machine learning GEOSCIENCES Remote sensing Regression CLASSIFICATION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部