期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide 被引量:2
1
作者 Liyun Yu anne ladegaard skov 《International Journal of Smart and Nano Materials》 SCIE EI 2015年第4期268-289,共22页
One prominent method of modifying the properties of dielectric elastomers(DEs)is by adding suitable metal oxide fillers.However,almost all commercially available sili-cone elastomers are already heavily filled with si... One prominent method of modifying the properties of dielectric elastomers(DEs)is by adding suitable metal oxide fillers.However,almost all commercially available sili-cone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting metal oxide filled elastomer may contain too much filler.We therefore explore the replacement of silica with titanium dioxide to ensure a relatively low concentration of filler.Liquid silicone rubber(LSR)has relatively low viscosity,which is favorable for loading inorganic fillers.In the present study,four commercial LSRs with varying loadings of silica and one benchmark room-temperature vulcanizable rubber(RTV)were investigated.The resulting elastomers were evaluated with respect to their dielectric permittivity,tear and tensile strengths,electrical breakdown,thermal stability and dynamic viscosity.Filled silicone elasto-mers with high loadings of nano-sized titanium dioxide(TiO_(2))particles were also studied.The best overall performing formulation had 35 wt.%TiO_(2) nanoparticles in the POWERSIL®XLR LSR,where the excellent ensemble of relative dielectric permittivity of 4.9 at 0.1 Hz,breakdown strength of 160 V µm^(−1),tear strength of 5.3 MPa,elongation at break of 190%,a Young’s modulus of 0.85 MPa and a 10% strain response(simple tension)in a 50 Vμm^(−1) electric field was obtained. 展开更多
关键词 silicone rubber titanium dioxide dielectric permittivity mechanical properties electrical breakdown
在线阅读 下载PDF
Incorporation of liquid fillers into silicone foams to enhance the electro-mechanical properties 被引量:1
2
作者 Min Liu Liyun Yu +1 位作者 Sindhu Vudayagiri anne ladegaard skov 《International Journal of Smart and Nano Materials》 SCIE EI 2020年第1期11-23,共13页
Silicone foams with and without liquid fillers(silicone oils of various types and glycerol,respectively)are synthesized and analyzed to be used as dielectric layers in capacitive sensors.A simple fabrication technique... Silicone foams with and without liquid fillers(silicone oils of various types and glycerol,respectively)are synthesized and analyzed to be used as dielectric layers in capacitive sensors.A simple fabrication technique involving only four components i.e.Sylgard 184,glycerol,sodium hydroxide and ethanol is used to make these silicone foams after which they are filled with silicone oil or glycerol by soaking the foam in respective liquid.Mechanical and dielectric properties of the foams are examined.The oil reinforces the foam’s dielectric properties,softens the foam and improves its capacitive response,making it a very good dielectric material for fabricating capacitive pressure sensors.Compared to dry silicone foams,foams filled with-and swollen by-chloropropyl-functional silicone oil,show a low Young’smodulus(31 kPa),a high and stable relative dielectric permittivity of around 5,and a high capacitive response of 132%for an appliedpressureof 12 kPa.Thepresence of oil stabilizes the soft foam and ensures that it does not buckle under high pressure. 展开更多
关键词 Silicone foams electro-mechanical capacitive pressure sensors GLYCEROL silicone oil chloropropyl-functional silicone oil
在线阅读 下载PDF
Temperature dependence of dielectric breakdown of silicone-based dielectric elastomers 被引量:1
3
作者 Liyun Yu Sindhu Vudayagiri +1 位作者 Lucy Ajakaiye Jensen anne ladegaard skov 《International Journal of Smart and Nano Materials》 SCIE EI 2020年第2期129-146,共18页
A large number of insulation/dielectric failures in power systems are related to thermally-induced dielectrical breakdown,also known as‘thermal breakdown’,at higher operating temperatures.In this work,the thermal br... A large number of insulation/dielectric failures in power systems are related to thermally-induced dielectrical breakdown,also known as‘thermal breakdown’,at higher operating temperatures.In this work,the thermal breakdown behavior of typical silicone formulations,used as dielectrics in stretchable electronic devices,is analyzed at practically relevant operating temperatures ranging from 20℃ to 80℃.An effective way of delaying the thermal breakdown of insulating materials is to blend micro-or nano-sized inorganic particles with high thermal conductivity,to dissipate better any losses generated during energy transduction.Therefore,two types of commercial silicone formulations,blended with two types of rutile hydrophobic,high-dielectric TiO_(2) fillers,are investigated in relation to their dielectric properties,namely,relative permittivity,the dissipation factor,and electrical breakdown strength.The breakdown strengths of these silicone composites are subsequently evaluated using Weibull analysis,which indicates a negative correlation between temperature and shape parameter for all compositions,thus illustrating that the homogeneity of the samples decreases in line with temperature,but the breakdown strengths nevertheless increase initially due to the trapping effect from the high-permittivity fillers. 展开更多
关键词 Silicone elastomers titanium dioxide fillers dielectric breakdown strength Weibull TEMPERATURE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部