The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate elect...The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate electrolytes,cou pled with the formation of unstable solid electrolyte interphases(SEI),exacerbate the degradation of LMB performance at high current densities.Herein,we propose a versatile electrolyte design strategy that incorporates cyclohexyl methyl ether(CME)as a co-solvent to reshape the Li^(+)solvation environment by the steric-hindrance effect of bulky molecules and their competitive coordination with other solvent molecules.Simulation calculations and spectral analysis demonstrate that the addition of CME molecules reduces the involvement of other solvent molecules in the Li solvation sheath and promotes the formation of Li^(+)-PF_(6)^(-)coordination,thereby accelerating Li^(+)transport kinetics.Additionally,this electrolyte composition improves Li^(+)desolvation kinetics and fosters the formation of inorganic-rich SEI,ensuring cycle stability under fast charging.Consequently,the Li‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery with the modified electrolyte retains 82% of its initial capacity after 463 cycles at 1 C.Even under the extreme fast-charging condition of 5 C,the battery can maintain 80% capacity retention after 173 cycles.This work provides a promising approach for the development of highperformance LMBs by modulating solvation environment of electrolytes.展开更多
Many non-precious metal-based catalysts with high intrinsic activity for catalytic reactions are prone to structural degradation in practical application,which leads to poor stability.In this work,we propose c-CoSe_(2...Many non-precious metal-based catalysts with high intrinsic activity for catalytic reactions are prone to structural degradation in practical application,which leads to poor stability.In this work,we propose c-CoSe_(2)/o-CoSe_(2)as the oxygen electrode of lithium-oxygen batteries(LOBs)to improve its cycle stability.The heterogeneous interface inside c-CoSe_(2)/o-CoSe_(2)leads to an increase in the covalence bonds between Co and Se ions,which greatly enhances the robustness of the crystal lattice,thereby improving the stability of the catalyst.In addition,the strong interaction between the mixed phases is favorable for adjusting the electron density around the active sites and boosting oxygen electrode kinetics.Moreover,the epitaxial growth of o-CoSe_(2)on c-CoSe_(2)will cause abundant heterogeneous interfaces and slight lattice distortion along the interfaces,thereby providing sufficient catalytic reaction sites.The DFT calculation results show that the optimized adsorption of intermediates at the heterogeneous interface plays an important role in boosting oxygen electrode reactions and improving the electrochemical performance of LOBs.The experimental results show that LOBs with the c-CoSe_(2)/o-CoSe_(2)electrodes exhibit outstanding performance,including large specific capacity of about 23,878 m A h g^(-1),high coulombic efficiency of up to 93.66%,and excellent stability of over 176 cycles(1410 h).展开更多
Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes h...Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes has seriously hindered the development of ZAB.Herein,the N-doped carbon cloth(NC)prepared via magnetron sputtering is explored as the substrate to induce the uniform nucleation of zinc metal and suppress dendrite growth.Results show that the introduction of heteroatoms accelerates the migration and deposition kinetics of Zn^(2+)by boosting the desolvation process of Zn^(2+),eventually reducing the nucleation overpotential.Besides,theoretical calculation results confirm the zincophilicity of N-containing functional group(such as pyridine N and pyrrole N),which can guide the nucleation and growth of zinc uniformly on the electrode surface by both promoting the redistribution of Zn^(2+) in the vicinity of the surface and enhancing its interaction with zinc atoms.As a result,the half-cell assembled with magnetron sputtered carbon cloth achieves a high zinc stripping/plating coulombic efficiency of 98.8%and long-term stability of over 500 cycles at 0.2 mA cm^(-2).And the Coulombic efficiency reached about 99.5%at the 10th cycle and maintained for more than 210 cycles at a high current density of 5.0 mA cm^(-2).The assembled symmetrical battery can deliver 220 plating/stripping cycles with ultra-low voltage hysteresis of only 11 mV.In addition,the assembled zinc-air full battery with NC-Zn anode delivers a high special capacity of about 429 mAh g_(Zn)^(-1) and a long life of over 430 cycles.The effectiveness of surface functionalization in promoting the transfer and deposition kinetics of Zn^(2+) presented in this work shows enlightening significance in the development of metal anodes in aqueous electrolytes.展开更多
Metallic lithium is deemed as the“Holy Grail”anode in high-energy-density secondary batteries.Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+in the ...Metallic lithium is deemed as the“Holy Grail”anode in high-energy-density secondary batteries.Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+in the vicinity of the anode,however,induce severe safety concerns and poor cycling efficiency,dragging lithium metal anode out of practical application.Herein we address these issues by using cross-linked lithiophilic amino phosphonic acid resin as the effective host with the ion-transportenhancement feature.Based on theoretical calculations and multiphysics simulation,it is found that this ion-transportenhancement feature is capable of facilitating the self-concentration kinetics of Li+and accelerating Li^(+)transfer at the electrolyte/electrode interface,leading to uniform bulk lithium deposition.Experimental results show that the proposed lithiumhosting resin decreases the irreversible lithium capacity and improves lithium utilization(with the Coulombic efficiency(CE)of 98.8%over 130 cycles).Our work demonstrates that inducing the self-concentrating distribution of Li+at the interface can be an effective strategy for improving the interfacial ion concentration gradient and optimizing lithium deposition,which opens a new avenue for the practical development of next-generation lithium metal batteries.展开更多
Lithium-sulfur(Li-S)batteries have demonstrated the potential to conquer the energy storage related market due to the extremely high energy density.However,their performances at low temperature are still needed to be ...Lithium-sulfur(Li-S)batteries have demonstrated the potential to conquer the energy storage related market due to the extremely high energy density.However,their performances at low temperature are still needed to be improved to broaden their applications.Therefore,in this review,the basic failure mechanisms and major challenges of Li-S battery at low temperature are categorized as the high desolvation barrier of Li^(+),uncontrolled nucleation and deposition of lithium,polysulfides clustering,and passivation of cathode by film like Li_(2)S.Targeting these major issues,strategies,and advances concerning the design of optimized electrolyte,composite cathode and functional separator are highlighted and discussed.Finally,the suggestions are proposed for the future development of practical Li-S battery working at low temperature scenarios,hoping to accelerate the commercialization process and bring revolution to the energy storage market.展开更多
The implementation of a robust artificial solid electrolyte interphase(ASEI)to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in ...The implementation of a robust artificial solid electrolyte interphase(ASEI)to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in lithium metal batteries.Despite of devoted efforts in tailoring components of ASEI,the intrinsic mechanism of interfacial synergy within the heterogeneous interphases has not been well elucidated yet.Herein,we show that the lithium plating/striping behaviors can be substantially enhanced(over 900 h with an overpotential of less than 20 mV at 1 mA·cm^(−2)in Li|Li symmetric cells and 146 cycles in anode-free cells)by regulating the heterogeneous interphases.This favorable ASEI composed of LiF and Li_(3)N components can be in-situ generated during cycling by large-scale fabricated fluorinated boron nitride coatings.Further,the synergy of each heterogeneous component within ASEI was explored theoretically and experimentally.Li_(3)N has high adsorption energy and low ion diffusion barrier,which facilitates the transport of lithium ions and avoids its local accumulation to evolve into dendrites.Both the substrate and LiF are interfacially stable with high electron tunneling barriers,preventing the electrolyte decomposition and parasitic reactions.Finally,the high stiffness of the boron nitride also ensures lithium dendrites are suppressed once they grow,providing a stable environment for long-term cycling of lithium metal batteries.展开更多
基金supported by the Lithium Resources and Lithium Materials Key Laboratory of Sichuan Province(LRMKF202405)the National Natural Science Foundation of China(52402226)+3 种基金the Natural Science Foundation of Sichuan Province(2024NSFSC1016)the Scientific Research Startup Foundation of Chengdu University of Technology(10912-KYQD2023-10240)the opening funding from Key Laboratory of Engineering Dielectrics and Its Application(Harbin University of Science and Technology)(KFM202507,Ministry of Education)the funding provided by the Alexander von Humboldt Foundation。
文摘The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate electrolytes,cou pled with the formation of unstable solid electrolyte interphases(SEI),exacerbate the degradation of LMB performance at high current densities.Herein,we propose a versatile electrolyte design strategy that incorporates cyclohexyl methyl ether(CME)as a co-solvent to reshape the Li^(+)solvation environment by the steric-hindrance effect of bulky molecules and their competitive coordination with other solvent molecules.Simulation calculations and spectral analysis demonstrate that the addition of CME molecules reduces the involvement of other solvent molecules in the Li solvation sheath and promotes the formation of Li^(+)-PF_(6)^(-)coordination,thereby accelerating Li^(+)transport kinetics.Additionally,this electrolyte composition improves Li^(+)desolvation kinetics and fosters the formation of inorganic-rich SEI,ensuring cycle stability under fast charging.Consequently,the Li‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery with the modified electrolyte retains 82% of its initial capacity after 463 cycles at 1 C.Even under the extreme fast-charging condition of 5 C,the battery can maintain 80% capacity retention after 173 cycles.This work provides a promising approach for the development of highperformance LMBs by modulating solvation environment of electrolytes.
基金financially supported by the National Natural Science Foundation of China(No.21905033)Department of Science and Technology of Sichuan Province(No.2019YJ0503)State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(No.2020P4FZG02A)。
文摘Many non-precious metal-based catalysts with high intrinsic activity for catalytic reactions are prone to structural degradation in practical application,which leads to poor stability.In this work,we propose c-CoSe_(2)/o-CoSe_(2)as the oxygen electrode of lithium-oxygen batteries(LOBs)to improve its cycle stability.The heterogeneous interface inside c-CoSe_(2)/o-CoSe_(2)leads to an increase in the covalence bonds between Co and Se ions,which greatly enhances the robustness of the crystal lattice,thereby improving the stability of the catalyst.In addition,the strong interaction between the mixed phases is favorable for adjusting the electron density around the active sites and boosting oxygen electrode kinetics.Moreover,the epitaxial growth of o-CoSe_(2)on c-CoSe_(2)will cause abundant heterogeneous interfaces and slight lattice distortion along the interfaces,thereby providing sufficient catalytic reaction sites.The DFT calculation results show that the optimized adsorption of intermediates at the heterogeneous interface plays an important role in boosting oxygen electrode reactions and improving the electrochemical performance of LOBs.The experimental results show that LOBs with the c-CoSe_(2)/o-CoSe_(2)electrodes exhibit outstanding performance,including large specific capacity of about 23,878 m A h g^(-1),high coulombic efficiency of up to 93.66%,and excellent stability of over 176 cycles(1410 h).
基金supported by the National Natural Science Foundation of China(Grant No.21905033)the Science and Technology Department of Sichuan Province(Grant No.2019YJ0503)State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(2020P4FZG02A).
文摘Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes has seriously hindered the development of ZAB.Herein,the N-doped carbon cloth(NC)prepared via magnetron sputtering is explored as the substrate to induce the uniform nucleation of zinc metal and suppress dendrite growth.Results show that the introduction of heteroatoms accelerates the migration and deposition kinetics of Zn^(2+)by boosting the desolvation process of Zn^(2+),eventually reducing the nucleation overpotential.Besides,theoretical calculation results confirm the zincophilicity of N-containing functional group(such as pyridine N and pyrrole N),which can guide the nucleation and growth of zinc uniformly on the electrode surface by both promoting the redistribution of Zn^(2+) in the vicinity of the surface and enhancing its interaction with zinc atoms.As a result,the half-cell assembled with magnetron sputtered carbon cloth achieves a high zinc stripping/plating coulombic efficiency of 98.8%and long-term stability of over 500 cycles at 0.2 mA cm^(-2).And the Coulombic efficiency reached about 99.5%at the 10th cycle and maintained for more than 210 cycles at a high current density of 5.0 mA cm^(-2).The assembled symmetrical battery can deliver 220 plating/stripping cycles with ultra-low voltage hysteresis of only 11 mV.In addition,the assembled zinc-air full battery with NC-Zn anode delivers a high special capacity of about 429 mAh g_(Zn)^(-1) and a long life of over 430 cycles.The effectiveness of surface functionalization in promoting the transfer and deposition kinetics of Zn^(2+) presented in this work shows enlightening significance in the development of metal anodes in aqueous electrolytes.
基金This work was financially supported by the National Natural Science Foundation of China(No.21905033)the Science and Technology Department of Sichuan Province(No.2019YJ0503)The support from the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(No.2020P4FZG02A)is also appreciated.
文摘Metallic lithium is deemed as the“Holy Grail”anode in high-energy-density secondary batteries.Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+in the vicinity of the anode,however,induce severe safety concerns and poor cycling efficiency,dragging lithium metal anode out of practical application.Herein we address these issues by using cross-linked lithiophilic amino phosphonic acid resin as the effective host with the ion-transportenhancement feature.Based on theoretical calculations and multiphysics simulation,it is found that this ion-transportenhancement feature is capable of facilitating the self-concentration kinetics of Li+and accelerating Li^(+)transfer at the electrolyte/electrode interface,leading to uniform bulk lithium deposition.Experimental results show that the proposed lithiumhosting resin decreases the irreversible lithium capacity and improves lithium utilization(with the Coulombic efficiency(CE)of 98.8%over 130 cycles).Our work demonstrates that inducing the self-concentrating distribution of Li+at the interface can be an effective strategy for improving the interfacial ion concentration gradient and optimizing lithium deposition,which opens a new avenue for the practical development of next-generation lithium metal batteries.
基金the support from the National Natural Science Foundation of China(No.52003038)China Postdoctoral Science Foundation funded project(No.2022M710600)+1 种基金the China National Postdoctoral Program for Innovative Talents(No.BX20220053)the Doctoral Project of Xichang University(No.YBZ202221)。
文摘Lithium-sulfur(Li-S)batteries have demonstrated the potential to conquer the energy storage related market due to the extremely high energy density.However,their performances at low temperature are still needed to be improved to broaden their applications.Therefore,in this review,the basic failure mechanisms and major challenges of Li-S battery at low temperature are categorized as the high desolvation barrier of Li^(+),uncontrolled nucleation and deposition of lithium,polysulfides clustering,and passivation of cathode by film like Li_(2)S.Targeting these major issues,strategies,and advances concerning the design of optimized electrolyte,composite cathode and functional separator are highlighted and discussed.Finally,the suggestions are proposed for the future development of practical Li-S battery working at low temperature scenarios,hoping to accelerate the commercialization process and bring revolution to the energy storage market.
基金supported by the National Natural Science Foundation of China(Nos.52003038 and 52192610)Startup funds of Yangtze Delta Region Institute(Huzhou),University of Electronic Science and Technology of China(No.U03210019).
文摘The implementation of a robust artificial solid electrolyte interphase(ASEI)to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in lithium metal batteries.Despite of devoted efforts in tailoring components of ASEI,the intrinsic mechanism of interfacial synergy within the heterogeneous interphases has not been well elucidated yet.Herein,we show that the lithium plating/striping behaviors can be substantially enhanced(over 900 h with an overpotential of less than 20 mV at 1 mA·cm^(−2)in Li|Li symmetric cells and 146 cycles in anode-free cells)by regulating the heterogeneous interphases.This favorable ASEI composed of LiF and Li_(3)N components can be in-situ generated during cycling by large-scale fabricated fluorinated boron nitride coatings.Further,the synergy of each heterogeneous component within ASEI was explored theoretically and experimentally.Li_(3)N has high adsorption energy and low ion diffusion barrier,which facilitates the transport of lithium ions and avoids its local accumulation to evolve into dendrites.Both the substrate and LiF are interfacially stable with high electron tunneling barriers,preventing the electrolyte decomposition and parasitic reactions.Finally,the high stiffness of the boron nitride also ensures lithium dendrites are suppressed once they grow,providing a stable environment for long-term cycling of lithium metal batteries.