Previous studies have reported a relationship between exposure to metals and polycyclic aromatic hydrocarbons(PAHs)and blood glucose levels,but whether the mechanisms are mediated by amino acids remains to be elucidat...Previous studies have reported a relationship between exposure to metals and polycyclic aromatic hydrocarbons(PAHs)and blood glucose levels,but whether the mechanisms are mediated by amino acids remains to be elucidated.We conducted a three-wave repeated measurement study involving 201 elderly individuals(aged≥50 years)from five communities in Beijing,China.We simultaneously measured eightmetals in both blood and urine,six monohydroxy PAHs in urine,and 23 amino acids in blood.Linear mixed-effects and sparse partial least squares models were used to evaluate the individual effects,and Bayesian kernel machine regression was employed to mixture effects.Mediation analysis was further used to explore whether amino acids mediators mediate the association.We observed significant associations of selenium and strontium with increased blood glucose.Additionally,blood copper,urinary nickel,as well as urinary 1+9 hydroxyphenanthrene,were associated with irregular blood glucose regulation.Moreover,we found that amino acids such as leucine,proline,and alanine may mediate the associations.This study is the first to investigate the effect of metals and PAHs on blood glucose homeostasis,while also exploring the mediating role of amino acids,offering new insights into the impact of metals and PAHs on blood glucose regulation.展开更多
Previous studies have suggested that abnormal hepatobiliary system function may contribute to poor prognosis in patientswith acute coronary syndrome(ACS)and that abnormal hepatobiliary system function may be associate...Previous studies have suggested that abnormal hepatobiliary system function may contribute to poor prognosis in patientswith acute coronary syndrome(ACS)and that abnormal hepatobiliary system function may be associated with per-and polyfluoroalkyl substances(PFAS)exposure.However,there is limited evidence for this association in cardiovascular subpopulations,particularly in the ACS patients.Therefore,we performed this study to evaluate the association between plasma PFAS exposure and hepatobiliary system function biomarkers in patients with ACS.This study included 546 newly diagnosed ACS patients at the Second Hospital of Hebei Medical University,and data on 15 hepatobiliary system function biomarkers were obtained from medical records.Associations between single PFAS and hepatobiliary system function biomarkers were assessed using multiple linear regression models and restricted cubic spline model(RCS),and mixture effects were assessed using the Quantile g-computation model.The results showed that total bile acids(TBA)was negative associated with perfluorohexane sulfonic acid(PFHxS)(-7.69%,95%CI:-12.15%,-3.01%).According to the RCS model,linear associations were found between TBA and PFHxS(P for overall=0.003,P for non-linear=0.234).We also have observed the association between between PFAS congeners and liver enzyme such as aspartate aminotransferase(AST)and α-l-Fucosidase(AFU),but it was not statistically significant after correction.In addition,Our results also revealed an association between prealbumin(PA)and PFAS congeners as well as mixtures.Our findings have provided a piece of epidemiological evidence on associations between PFAS congeners or mixture,and serum hepatobiliary system function biomarkers in ACS patients,which could be a basis for subsequent mechanism studies.展开更多
BACKGROUND With accumulating evidence showing a benefit in the renal and cardiovascular systems,diabetes guidelines recommend that patients with diabetes and chronic kidney disease(CKD)be treated with sodium-glucose c...BACKGROUND With accumulating evidence showing a benefit in the renal and cardiovascular systems,diabetes guidelines recommend that patients with diabetes and chronic kidney disease(CKD)be treated with sodium-glucose cotransporter-2 inhibitor(SGLT2i)and/or glucagon like peptide-1 receptor agonists(GLP-1RAs)for renal protection.The real-world efficacy of the two medications on the urinary albumin-creatinine ratio(UACR)and estimated glomerular filtration rate(eGFR)remains to be explored.AIM To evaluate the SGLT2i and GLP-1RA application rates and UACR alterations after intervention in a real-world cohort of patients with diabetes.METHODS A cohort of 5482 patients with type 2 diabetes were enrolled and followed up at the Integrated Care Clinic for Diabetes of Peking University First Hospital for at least 6 months.Propensity score matching was performed,and patients who were not recommended for GLP-1RA or SGLT2i with comparable sex categories and ages were assigned to the control group at a 1:2 ratio.Blood glucose,body weight,UACR and eGFR were evaluated after 6 months of treatment in real-world clinical practice.RESULTS A total of 139(2.54%)patients started GLP-1RA,and 387(7.06%)received SGLT2i.After 6 months,the variations in fasting blood glucose,prandial blood glucose,and glycosylated hemoglobin between the GLP-1RA group and the SGLT2i and control groups were not significantly different.UACR showed a tendency toward a greater reduction compared with the control group,although this difference was not statistically significant(GLP-1RA vs control,-2.20 vs 30.16 mg/g,P=0.812;SGLT2i vs control,-20.61 vs 12.01 mg/g,P=0.327);eGFR alteration also showed no significant differences.Significant weight loss was observed in the GLP-1RA group compared with the control group(GLP-1RA vs control,-0.90 vs 0.27 kg,P<0.001),as well as in the SGLT2i group(SGLT2i vs control,-0.59 vs-0.03 kg,P=0.010).CONCLUSION Compared with patients who received other glucose-lowering drugs,patients receiving SGLT2i or GLP-1RAs presented significant weight loss,a decreasing trend in UACR and comparable glucose-lowering effects in realworld settings.展开更多
Associations of per-and polyfluoroalkyl substances(PFAS)on lipid metabolism have been documented but research remains scarce regarding effect of PFAS on lipid variability.To deeply understand their relationship,a step...Associations of per-and polyfluoroalkyl substances(PFAS)on lipid metabolism have been documented but research remains scarce regarding effect of PFAS on lipid variability.To deeply understand their relationship,a step-forward in causal inference is expected.To address these,we conducted a longitudinal study with three repeated measurements involving 201 participants in Beijing,among which 100 eligible participants were included for the present study.Twenty-three PFAS and four lipid indicators were assessed at each visit.We used linear mixed models and quantile g-computation models to investigate associations between PFAS and blood lipid levels.A latent class growth model described PFAS serum exposure patterns,and a generalized linear model demonstrated associations between these patterns and lipid variability.Our study found that PFDA was associated with increased TC(β=0.083,95%CI:0.011,0.155)and HDL-C(β=0.106,95%CI:0.034,0.178).The PFAS mixture also showed a positive relationship with TC(β=0.06,95%CI:0.02,0.10),with PFDA contributing most positively.Compared to the low trajectory group,the middle trajectory group for PFDA was associated with VIM of TC(β=0.756,95%CI:0.153,1.359).Furthermore,PFDA showed biological gradientswith lipid metabolism.This is the first repeated-measures study to identify the impact of PFAS serum exposure pattern on the lipid metabolism and the first to estimate the association between PFAS and blood lipid levels in middle-aged and elderly Chinese and reinforce the evidence of their causal relationship through epidemiological studies.展开更多
Although per-and polyfluoroalkyl substances(PFAS)have been frequently linked to cardiovascular and renal disease separately,evidence remains scarce regarding their systematic effect.Therefore,we recruited 546 newly di...Although per-and polyfluoroalkyl substances(PFAS)have been frequently linked to cardiovascular and renal disease separately,evidence remains scarce regarding their systematic effect.Therefore,we recruited 546 newly diagnosed acute coronary syndrome(ACS)patients and detected seven myocardial enzymes and six kidney function biomarkers.Twelve PFASwere also assessedwith ultra-high-performance liquid chromatography-tandem mass spectrometry.Generalized linear model and restricted cubic spline model were applied to single pollutant analysis.Quantile g-computation was used for mixture analysis.Network model was utilized to identify central and bridge nodes of pollutants and phenotypes.In the present study,perfluorohexane sulfonic acid was positively associated with uric acid(UA)(β=0.04,95%confidence interval(CI):0.01,0.07),and perfluorobutanoic acid was negatively associated with estimated glomerular filtration rate(β=-0.04,95%CI:-0.07,-0.01)but positively associated with UA(β=0.03,95%CI:0.01,0.06).In mixture analysis,each quantile increase in the PFAS mixture was significantly associated with UA(β=0.08,95%CI:0.04,0.11).Network analysis revealed that perfluorooctanoate,UA,and myoglobin were denoted as bridge nodes,and the first principal component of lactate dehydrogenase and creatine kinase-myocardial band was identified as the node with the highest strength and expected influence.This study investigates the systematic impact of PFAS exposure through cardiorenal interaction network,which highlights that PFAS may serve as an upstream approach in UA-modulated cardiorenal network to affect cardiorenal system comprehensively.展开更多
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and ident...Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).展开更多
A simplified model for SO_(2) generation during spontaneous combustion of coal gangue was put forward and validated using the measured data.Using the proposed model,the effects of initial temperature inside the gangue...A simplified model for SO_(2) generation during spontaneous combustion of coal gangue was put forward and validated using the measured data.Using the proposed model,the effects of initial temperature inside the gangue and fresh air supply on SO_(2) generation were discussed.The results showed that,higher initial temperature inside the gangue could accelerate the oxidation rate of FeS_(2) and increase the maximum concentration of SO_(2).If initial temperature inside the gangue increased by about 37%,the total SO_(2) generation increased by 166%.Fresh air supply had less significant effect on the oxidation rate of FeS_(2).However,the higher the fresh air supply was,the more FeS_(2) could be oxidized,which ultimately produced more SO_(2).Although the computed results and the measured data concerning the inner locations inside the gangue had a certain degree of error,the proposed model can provide a relatively precise total release of SO_(2) within acceptable accuracy.Besides,this method provides a useful prototype to predict the generation of hazardous materials,such as CO,NO_(x),and chlorine during the spontaneous combustion of coal gangue.展开更多
D-Psicose,as a low-calorie rare sugar,has attracted a lot of attention in recent years for alternating to sucrose.The anti-obesity effect of D-psicose has been extensively confirmed in previous studies,however,the imp...D-Psicose,as a low-calorie rare sugar,has attracted a lot of attention in recent years for alternating to sucrose.The anti-obesity effect of D-psicose has been extensively confirmed in previous studies,however,the impact of D-psicose on colitis remains vague.Here,we firstly evaluated the effect of the D-psicose prophylactic intervention on dextran sulfate sodium-induced colitis in C57BL/6 mice.The pathological symptoms,inflammatory cytokines levels,gut microbiota composition,short chain fatty acids(SCFAs)production and colonic barrier integrity were comprehensively evaluated.The results confirmed that D-psicose intervention aggravated colitis,characterized by the exacerbation of colon shortening,increase of colonic inflammatory infiltration,and marked exaltation of disease activity indices and IL-6,IL-1βand TNF-αlevels.Further,the dysfunction of gut microbiota was identified in the psicose group.The abundance of pro-inflammatory bacteria Lachnospiraceae_NK4A136_group was significantly up-regulated while the abundance of probiotics Akkermansia and Lactobacillus were significantly down-regulated in the psicose group compared to the model group.Moreover,the production of SCFAs was suppressed in the psicose group,accompanied by a decrease in the level of mucin 2(Muc-2).Collectively,the underlying mechanism of the exacerbation of colitis by D-psicose intervention might be attributed to microbiota dysfunction accompanied by the reduction of SCFAs,which leads to the damage of the mucosal barrier and the intensifi cation of inflammatory invasion.展开更多
We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (-1.6 M⊙) and radius (-10km). Together with a broad collecti...We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (-1.6 M⊙) and radius (-10km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.展开更多
With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW)...With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.展开更多
The indocyanine green(ICG)clearance test is an objective measurement of functional liver reserve(FLR)[1].The liver can preserve normal functions with a 70%−80%functional liver volume resection[2]and the remnant is cap...The indocyanine green(ICG)clearance test is an objective measurement of functional liver reserve(FLR)[1].The liver can preserve normal functions with a 70%−80%functional liver volume resection[2]and the remnant is capable of regeneration.However,liver regenerative properties are affected by hepatitis,fatty liver,cirrhosis and damage caused by chemotherapy[3].ICG combined with the Child-Pugh score are main criteria for evaluating FLR.A safe hepatectomy procedure requires the remnant liver to be 25%−30%of the normal volume.For patients with an indocyanine green retention rate at 15 min(ICG-R15)>20%,segment liver resection,limited hepatectomy or tumor enucleation is recommended,but there has been no clear clarification of the essential remnant liver volume[4].In China,the experts’consensus of preoperative evaluation of liver reserve function incorporates ICGR15 tests.展开更多
The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR inv...The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.展开更多
Microbial fabrication of metal nanoparticles(MNPs)has received significant attention due to the advantages of low toxicity,energy efficiency and ecological safety.Diverse groups of MNPs can be synthesized intracellula...Microbial fabrication of metal nanoparticles(MNPs)has received significant attention due to the advantages of low toxicity,energy efficiency and ecological safety.Diverse groups of MNPs can be synthesized intracellularly or extracellularly by various wild-type microorganisms,including bacteria,fungi,algae and viruses.Synthetic biology approaches,represented by genetic engineering,have been applied to overcome the shortcomings in productivity,stability,and controllability of biosynthetic MNPs.Scanning electron microscope(SEM),transmission electron microscope(TEM)and other characterization techniques assist in deciphering their unique properties.In addition,biosynthetic MNPs have been widely explored for the utilization in environmental remediation and contaminant detection.And machine learning contains a great potential for designing targeted MNPs and predicting their toxicity.This review provides a comprehensive overview of the research progress in the microbial synthesis of MNPs.An outlook on the current challenges and future prospects in the biologically controllable synthesis and engineering environmental applications of MNPs is also provided in this review.展开更多
Functional materials with multiple properties are urgent to be explored to reach high requirements for applications nowadays.In this work,a new multifunctional one-dimensional(1D)chain compound[N(C_(3)H_(7))_(4)][Cu(o...Functional materials with multiple properties are urgent to be explored to reach high requirements for applications nowadays.In this work,a new multifunctional one-dimensional(1D)chain compound[N(C_(3)H_(7))_(4)][Cu(ohpma)]·H_(2)O 1(ohpma=deprotonated N-(2-hydoxyphenyl)oxamic acid)exhibiting both 1D antiferromagnetic and nonlinear optical properties,which are both originated from the same polar[Cu(C_(8)H_(4)NO_(4))]magnetic units,has been successfully synthesized by evaporation at room temperature.Bis-polydentate nature of the(ohpma)3−ligand with constrained tridentate and bidentate coordination sites conducts Cu^(2+)ions coordinating in different geometries and forms 1D chains along the c axis,which are further separated by the[N(C_(3)H_(7))_(4)]+cations.And the 1D magnetic chains further exhibit noncentrosymmetric polar arrangement.Nonlinear optical study shows polar compound 1 exhibits a discernible second-harmonic generation(SHG)efficiency and the calculation of the partial density of states indicates that the SHG efficiency of 1 is mainly originated from the polar[Cu(C_(8)H_(4)NO_(4))]magnetic units.Moreover,magnetic susceptibility shows a broad maximum around 70 K with strong intrachain interaction of J/k B=−113.0 K but no long-range order is observed down to 2 K,suggesting that 1 shows a good 1D magnetism.Both good 1D magnetism and SHG activity suggest that 1 could be as a potential multifunctional material,particularly.展开更多
Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers,offering high performance and improved resilience to fabri...Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers,offering high performance and improved resilience to fabrication variations and temperature fluctuations.However,the current computational spectrometers are impractical because they rely on a brute-force random design approach for disordered structures.This leads to an uncontrollable,non-reproducible,and suboptimal spectrometer performance.In this study,we revolutionize the existing paradigm by introducing a novel inverse design approach for computational spectrometers.By harnessing the power of inverse design,which has traditionally been applied to optimize single devices with simple performance,we successfully adapted it to optimize a complex system comprising multiple correlated components with intricate spectral responses.This approach can be applied to a wide range of structures.We validated this by realizing a spectrometer utilizing a new type of disordered structure based on interferometric effects that exhibits negligible loss and high sensitivity.For a given structure,our approach yielded a remarkable 12-times improvement in the spectral resolution and a four-fold reduction in the cross-correlation between the filters.The resulting spectrometer demonstrated reliable and reproducible performance with the precise determination of structural parameters.展开更多
As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
Extreme ozone pollution events(EOPEs)are associated with synoptic weather patterns(SWPs)and pose severe health and ecological risks.However,a systematic investigation of themeteorological causes,transport pathways,and...Extreme ozone pollution events(EOPEs)are associated with synoptic weather patterns(SWPs)and pose severe health and ecological risks.However,a systematic investigation of themeteorological causes,transport pathways,and source contributions to historical EOPEs is still lacking.In this paper,the K-means clustering method is applied to identify six dominant SWPs during the warm season in the Yangtze River Delta(YRD)region from 2016 to 2022.It provides an integrated analysis of the meteorological factors affecting ozone pollution in Hefei under different SWPs.Using the WRF-FLEXPART model,the transport pathways(TPPs)and geographical sources of the near-surface air masses in Hefei during EOPEs are investigated.The results reveal that Hefei experienced the highest ozone concentration(134.77±42.82μg/m^(3)),exceedance frequency(46 days(23.23%)),and proportion of EOPEs(21 instances,47.7%)under the control of peripheral subsidence of typhoon(Type 5).Regional southeast winds correlated with the ozone pollution in Hefei.During EOPEs,a high boundary layer height,solar radiation,and temperature;lowhumidity and cloud cover;and pronounced subsidence airflow occurred over Hefei and the broader YRD region.The East-South(E_S)patterns exhibited the highest frequency(28 instances,65.11%).Regarding the TPPs and geographical sources of the near-surface air masses during historical EOPEs.The YRD was the main source for land-originating air masses under E_S patterns(50.28%),with Hefei,southern Anhui,southern Jiangsu,and northern Zhejiang being key contributors.These findings can help improve ozone pollution early warning and control mechanisms at urban and regional scales.展开更多
Tissue interactions play a crucial role in tooth development.Notably,extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential.Here,we revealed that mandible extracellula...Tissue interactions play a crucial role in tooth development.Notably,extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential.Here,we revealed that mandible extracellular vesicles could modulate the proliferation and differentiation of dental mesenchymal cells by regulating the histone demethylase KDM2B.Further investigation showed that mandible derived extracellular vesicles could deliver miR-206 to KDM2B,thereby regulating tooth development.An animal study demonstrated that the miR-206/KDM2B pathway affected tooth morphogenesis and mineralization after eight weeks of subcutaneous transplantation in nude mice.In conclusion,this study suggested that the mandible played a critical role in tooth morphogenesis and mineralization,which could be a potential therapeutic target for abnormal tooth development and an alternative model for tooth regeneration.展开更多
The induction of antitumor immunity by tumor antigens released from cancer cells following regional photothermal therapy(PTT)alone may not be adequate for achieving complete tumor elimination.Combination therapy with ...The induction of antitumor immunity by tumor antigens released from cancer cells following regional photothermal therapy(PTT)alone may not be adequate for achieving complete tumor elimination.Combination therapy with immune adjuvants enhances antitumor immune responses,but faces challenges such as targeting deficiencies,systemic toxicity,and uncontrolled release behavior.Herein,we introduce a novel dual-functional hybrid membrane nanoparticle(HM-NP)incorporating gold nanorods(GNRs)and a thermally responsive polymer shell.HM-NP demonstrates exceptional homotypic targeting efficacy beneath the tumor cell membrane(TM),leading to substantial tumor accumulation.Upon in situ near-infrared(NIR)stimulation,GNRs within HM-NP generate heat,triggering the burst release of HM by facilitating the contraction and disintegration of the thermally responsive polymer shell.HM-NP exhibits excellent photothermal conversion efficiency under NIR irradiation,enabling effective destruction of primary tumors,release of tumor-associated antigens,and stimulation of potent anti-cancer immune.Simultaneously,the immune responses are strengthened by TM and Escherichia coli membrane(EM)through promoting the maturation of antigen presenting cells(APCs)and activating cytotoxic T lymphocytes(CTLs).Moreover,the use of polymer shells enables efficient cancer therapy with minimal host clearance and adverse effects.This photothermally triggered immunotherapy holds promise for precise and personalized treatment of tumors.展开更多
Studying the spatiotemporal distribution and transboundary transport of aerosols,NO_(2),SO_(2),and HCHO in typical regions is crucial for understanding regional pollution causes.In a 2-year study using multi-axis diff...Studying the spatiotemporal distribution and transboundary transport of aerosols,NO_(2),SO_(2),and HCHO in typical regions is crucial for understanding regional pollution causes.In a 2-year study using multi-axis differential optical absorption spectroscopy in Qingdao,Shanghai,Xi’an,and Kunming,we investigated pollutant distribution and transport across Eastern China-Ocean,Tibetan Plateau-Central and Eastern China,and China-Southeast Asia interfaces.First,pollutant distributionwas analyzed.Kunming,frequently clouded and misty,exhibited consistently high aerosol optical depth throughout the year.In Qingdao and Shanghai,NO_(2)and SO_(2),as well as SO_(2)in Xi’an,increased in winter.Elevated HCHO in summer in Shanghai and Xi’an,especially Xi’an,suggests potential ozone pollution issues.Subsequently,pollutant transportation across interfaces was studied.At the Eastern China-Ocean interface,the gas transport flux was the largest among other interfaces,with the outflux exceeding the influx,especially in winter and spring.The input of pollutants from the Tibetan Plateau to central-eastern Chinawas larger than the output in winter and spring,with SO_(2)having the highest transport flux in winter.The pollution input from Southeast Asia to China significantly exceeded the output,with spring and winter inputs being 3.22 and 3.03 times the output,respectively.Lastly,the transportation characteristics of a pollution event at Kunming were studied.During this period,pollutants were transported from west to east,with themaximum SO_(2)transport flux at an altitude of 2.87 km equaling 27.74μg/(m^(2)·s).It is speculated that this pollution was caused by the transport from Southeast Asian countries to Kunming.展开更多
基金supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project(No.2023ZD0513200)the National Natural Science Foundation of China(Nos.82404278 and 82404365)China Postdoctoral Science Foundation(Nos.2023M730317 and 2023T160066).
文摘Previous studies have reported a relationship between exposure to metals and polycyclic aromatic hydrocarbons(PAHs)and blood glucose levels,but whether the mechanisms are mediated by amino acids remains to be elucidated.We conducted a three-wave repeated measurement study involving 201 elderly individuals(aged≥50 years)from five communities in Beijing,China.We simultaneously measured eightmetals in both blood and urine,six monohydroxy PAHs in urine,and 23 amino acids in blood.Linear mixed-effects and sparse partial least squares models were used to evaluate the individual effects,and Bayesian kernel machine regression was employed to mixture effects.Mediation analysis was further used to explore whether amino acids mediators mediate the association.We observed significant associations of selenium and strontium with increased blood glucose.Additionally,blood copper,urinary nickel,as well as urinary 1+9 hydroxyphenanthrene,were associated with irregular blood glucose regulation.Moreover,we found that amino acids such as leucine,proline,and alanine may mediate the associations.This study is the first to investigate the effect of metals and PAHs on blood glucose homeostasis,while also exploring the mediating role of amino acids,offering new insights into the impact of metals and PAHs on blood glucose regulation.
基金supported by the National Natural Science Foundation of China(No.21976050)the Science and Technology Program of Hebei Province(No.21377779D)+3 种基金the Natural Science Foundation of Hebei Province(No.B2020206008)China Postdoctoral Science Foundation(Nos.2023M730317 and 2023T160066)the Fundamental Research Funds for the Central Universities(No.3332023042)the Open Project of Hebei Key Laboratory of Environment and Human Health(No.202301).
文摘Previous studies have suggested that abnormal hepatobiliary system function may contribute to poor prognosis in patientswith acute coronary syndrome(ACS)and that abnormal hepatobiliary system function may be associated with per-and polyfluoroalkyl substances(PFAS)exposure.However,there is limited evidence for this association in cardiovascular subpopulations,particularly in the ACS patients.Therefore,we performed this study to evaluate the association between plasma PFAS exposure and hepatobiliary system function biomarkers in patients with ACS.This study included 546 newly diagnosed ACS patients at the Second Hospital of Hebei Medical University,and data on 15 hepatobiliary system function biomarkers were obtained from medical records.Associations between single PFAS and hepatobiliary system function biomarkers were assessed using multiple linear regression models and restricted cubic spline model(RCS),and mixture effects were assessed using the Quantile g-computation model.The results showed that total bile acids(TBA)was negative associated with perfluorohexane sulfonic acid(PFHxS)(-7.69%,95%CI:-12.15%,-3.01%).According to the RCS model,linear associations were found between TBA and PFHxS(P for overall=0.003,P for non-linear=0.234).We also have observed the association between between PFAS congeners and liver enzyme such as aspartate aminotransferase(AST)and α-l-Fucosidase(AFU),but it was not statistically significant after correction.In addition,Our results also revealed an association between prealbumin(PA)and PFAS congeners as well as mixtures.Our findings have provided a piece of epidemiological evidence on associations between PFAS congeners or mixture,and serum hepatobiliary system function biomarkers in ACS patients,which could be a basis for subsequent mechanism studies.
基金Peking University First Hospital Institutional Review Board(No.2018104).
文摘BACKGROUND With accumulating evidence showing a benefit in the renal and cardiovascular systems,diabetes guidelines recommend that patients with diabetes and chronic kidney disease(CKD)be treated with sodium-glucose cotransporter-2 inhibitor(SGLT2i)and/or glucagon like peptide-1 receptor agonists(GLP-1RAs)for renal protection.The real-world efficacy of the two medications on the urinary albumin-creatinine ratio(UACR)and estimated glomerular filtration rate(eGFR)remains to be explored.AIM To evaluate the SGLT2i and GLP-1RA application rates and UACR alterations after intervention in a real-world cohort of patients with diabetes.METHODS A cohort of 5482 patients with type 2 diabetes were enrolled and followed up at the Integrated Care Clinic for Diabetes of Peking University First Hospital for at least 6 months.Propensity score matching was performed,and patients who were not recommended for GLP-1RA or SGLT2i with comparable sex categories and ages were assigned to the control group at a 1:2 ratio.Blood glucose,body weight,UACR and eGFR were evaluated after 6 months of treatment in real-world clinical practice.RESULTS A total of 139(2.54%)patients started GLP-1RA,and 387(7.06%)received SGLT2i.After 6 months,the variations in fasting blood glucose,prandial blood glucose,and glycosylated hemoglobin between the GLP-1RA group and the SGLT2i and control groups were not significantly different.UACR showed a tendency toward a greater reduction compared with the control group,although this difference was not statistically significant(GLP-1RA vs control,-2.20 vs 30.16 mg/g,P=0.812;SGLT2i vs control,-20.61 vs 12.01 mg/g,P=0.327);eGFR alteration also showed no significant differences.Significant weight loss was observed in the GLP-1RA group compared with the control group(GLP-1RA vs control,-0.90 vs 0.27 kg,P<0.001),as well as in the SGLT2i group(SGLT2i vs control,-0.59 vs-0.03 kg,P=0.010).CONCLUSION Compared with patients who received other glucose-lowering drugs,patients receiving SGLT2i or GLP-1RAs presented significant weight loss,a decreasing trend in UACR and comparable glucose-lowering effects in realworld settings.
基金supported by the National Natural Science Foundation of China(No.82404365)the Noncommunicable Chronic Diseases-National Science and Technology Major Project(No.2023ZD0513200)+7 种基金China Medical Board(No.15-230)China Postdoctoral Science Foundation(Nos.2023M730317and 2023T160066)the Fundamental Research Funds for the Central Universities(No.3332023042)the Open Project of Hebei Key Laboratory of Environment and Human Health(No.202301)the National Key Research and Development Program of China(No.2022YFC3703000)the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(No.2022-JKCS-11)the CAMS Innovation Fund for Medical Sciences(No.2022-I2M-JB-003)the Programs of the National Natural Science Foundation of China(No.21976050).
文摘Associations of per-and polyfluoroalkyl substances(PFAS)on lipid metabolism have been documented but research remains scarce regarding effect of PFAS on lipid variability.To deeply understand their relationship,a step-forward in causal inference is expected.To address these,we conducted a longitudinal study with three repeated measurements involving 201 participants in Beijing,among which 100 eligible participants were included for the present study.Twenty-three PFAS and four lipid indicators were assessed at each visit.We used linear mixed models and quantile g-computation models to investigate associations between PFAS and blood lipid levels.A latent class growth model described PFAS serum exposure patterns,and a generalized linear model demonstrated associations between these patterns and lipid variability.Our study found that PFDA was associated with increased TC(β=0.083,95%CI:0.011,0.155)and HDL-C(β=0.106,95%CI:0.034,0.178).The PFAS mixture also showed a positive relationship with TC(β=0.06,95%CI:0.02,0.10),with PFDA contributing most positively.Compared to the low trajectory group,the middle trajectory group for PFDA was associated with VIM of TC(β=0.756,95%CI:0.153,1.359).Furthermore,PFDA showed biological gradientswith lipid metabolism.This is the first repeated-measures study to identify the impact of PFAS serum exposure pattern on the lipid metabolism and the first to estimate the association between PFAS and blood lipid levels in middle-aged and elderly Chinese and reinforce the evidence of their causal relationship through epidemiological studies.
基金supported by the China Postdoctoral Science Foundation(Nos.2023M730317 and 2023T160066)the Fundamental Research Funds for the Central Universities(No.3332023042)+3 种基金the Open Project of Hebei Key Laboratory of Environment and Human Health(No.202301)the Programs of the National Natural Science Foundation of China(No.21976050)the Science and Technology Program of Hebei Province(No.21377779D)the Natural Science Foundation of Hebei Province,China(No.B2020206008).
文摘Although per-and polyfluoroalkyl substances(PFAS)have been frequently linked to cardiovascular and renal disease separately,evidence remains scarce regarding their systematic effect.Therefore,we recruited 546 newly diagnosed acute coronary syndrome(ACS)patients and detected seven myocardial enzymes and six kidney function biomarkers.Twelve PFASwere also assessedwith ultra-high-performance liquid chromatography-tandem mass spectrometry.Generalized linear model and restricted cubic spline model were applied to single pollutant analysis.Quantile g-computation was used for mixture analysis.Network model was utilized to identify central and bridge nodes of pollutants and phenotypes.In the present study,perfluorohexane sulfonic acid was positively associated with uric acid(UA)(β=0.04,95%confidence interval(CI):0.01,0.07),and perfluorobutanoic acid was negatively associated with estimated glomerular filtration rate(β=-0.04,95%CI:-0.07,-0.01)but positively associated with UA(β=0.03,95%CI:0.01,0.06).In mixture analysis,each quantile increase in the PFAS mixture was significantly associated with UA(β=0.08,95%CI:0.04,0.11).Network analysis revealed that perfluorooctanoate,UA,and myoglobin were denoted as bridge nodes,and the first principal component of lactate dehydrogenase and creatine kinase-myocardial band was identified as the node with the highest strength and expected influence.This study investigates the systematic impact of PFAS exposure through cardiorenal interaction network,which highlights that PFAS may serve as an upstream approach in UA-modulated cardiorenal network to affect cardiorenal system comprehensively.
基金supported by the National Natural Science Foundation of China,No.81330042,81620108018(both to SQF),and 81702147(to ZJW)
文摘Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).
基金the financial support provided by the Major Science and Technology Projects of Inner Mongolia Autonomous Region under Grant No.RZ190001148Fund of Education Department of Inner Mongolia Autonomous Region under Grant No.NJZY21480.
文摘A simplified model for SO_(2) generation during spontaneous combustion of coal gangue was put forward and validated using the measured data.Using the proposed model,the effects of initial temperature inside the gangue and fresh air supply on SO_(2) generation were discussed.The results showed that,higher initial temperature inside the gangue could accelerate the oxidation rate of FeS_(2) and increase the maximum concentration of SO_(2).If initial temperature inside the gangue increased by about 37%,the total SO_(2) generation increased by 166%.Fresh air supply had less significant effect on the oxidation rate of FeS_(2).However,the higher the fresh air supply was,the more FeS_(2) could be oxidized,which ultimately produced more SO_(2).Although the computed results and the measured data concerning the inner locations inside the gangue had a certain degree of error,the proposed model can provide a relatively precise total release of SO_(2) within acceptable accuracy.Besides,this method provides a useful prototype to predict the generation of hazardous materials,such as CO,NO_(x),and chlorine during the spontaneous combustion of coal gangue.
基金funded by the National Natural Science Foundation of China(No.32030083)。
文摘D-Psicose,as a low-calorie rare sugar,has attracted a lot of attention in recent years for alternating to sucrose.The anti-obesity effect of D-psicose has been extensively confirmed in previous studies,however,the impact of D-psicose on colitis remains vague.Here,we firstly evaluated the effect of the D-psicose prophylactic intervention on dextran sulfate sodium-induced colitis in C57BL/6 mice.The pathological symptoms,inflammatory cytokines levels,gut microbiota composition,short chain fatty acids(SCFAs)production and colonic barrier integrity were comprehensively evaluated.The results confirmed that D-psicose intervention aggravated colitis,characterized by the exacerbation of colon shortening,increase of colonic inflammatory infiltration,and marked exaltation of disease activity indices and IL-6,IL-1βand TNF-αlevels.Further,the dysfunction of gut microbiota was identified in the psicose group.The abundance of pro-inflammatory bacteria Lachnospiraceae_NK4A136_group was significantly up-regulated while the abundance of probiotics Akkermansia and Lactobacillus were significantly down-regulated in the psicose group compared to the model group.Moreover,the production of SCFAs was suppressed in the psicose group,accompanied by a decrease in the level of mucin 2(Muc-2).Collectively,the underlying mechanism of the exacerbation of colitis by D-psicose intervention might be attributed to microbiota dysfunction accompanied by the reduction of SCFAs,which leads to the damage of the mucosal barrier and the intensifi cation of inflammatory invasion.
基金funded by the National Basic Research Program of China (Grant No. 2009CB824800)the National Natural Science Foundation of China (Grant No. 10905048)the Youth Innovation Foundation of FujianProvince (Grant No. 2009J05013)
文摘We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (-1.6 M⊙) and radius (-10km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61925505,92373209 and 62235017).
文摘With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.
基金This study was supported by a grant from the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support(ZYLX201712).
文摘The indocyanine green(ICG)clearance test is an objective measurement of functional liver reserve(FLR)[1].The liver can preserve normal functions with a 70%−80%functional liver volume resection[2]and the remnant is capable of regeneration.However,liver regenerative properties are affected by hepatitis,fatty liver,cirrhosis and damage caused by chemotherapy[3].ICG combined with the Child-Pugh score are main criteria for evaluating FLR.A safe hepatectomy procedure requires the remnant liver to be 25%−30%of the normal volume.For patients with an indocyanine green retention rate at 15 min(ICG-R15)>20%,segment liver resection,limited hepatectomy or tumor enucleation is recommended,but there has been no clear clarification of the essential remnant liver volume[4].In China,the experts’consensus of preoperative evaluation of liver reserve function incorporates ICGR15 tests.
基金financially supported by the National Natural Science Foundation of China(22378204,22008121,51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(T2125004)+1 种基金the Funding of NJUST(No.TSXK2022D002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0454)。
文摘The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.
基金supported by National Key Research and Development Program of China(No.2020YFC1808204-01)Nanchang“Double Hundred Plan”Project(Innovative Talents-Talent Introduction)+1 种基金the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2021TS11)Heilongjiang Provincial Key Laboratory of Environmental Biotechnology and Heilongjiang Touyan Innovation Team Program。
文摘Microbial fabrication of metal nanoparticles(MNPs)has received significant attention due to the advantages of low toxicity,energy efficiency and ecological safety.Diverse groups of MNPs can be synthesized intracellularly or extracellularly by various wild-type microorganisms,including bacteria,fungi,algae and viruses.Synthetic biology approaches,represented by genetic engineering,have been applied to overcome the shortcomings in productivity,stability,and controllability of biosynthetic MNPs.Scanning electron microscope(SEM),transmission electron microscope(TEM)and other characterization techniques assist in deciphering their unique properties.In addition,biosynthetic MNPs have been widely explored for the utilization in environmental remediation and contaminant detection.And machine learning contains a great potential for designing targeted MNPs and predicting their toxicity.This review provides a comprehensive overview of the research progress in the microbial synthesis of MNPs.An outlook on the current challenges and future prospects in the biologically controllable synthesis and engineering environmental applications of MNPs is also provided in this review.
基金supported by the National Natural Science Foundation of China(NSFC,No.22101091)the Fundamental Research Funds for the Central Universities(No.2019kfyXKJC016)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B210003),Knowledge Innovation Program of Wuhan-Basic Research.
文摘Functional materials with multiple properties are urgent to be explored to reach high requirements for applications nowadays.In this work,a new multifunctional one-dimensional(1D)chain compound[N(C_(3)H_(7))_(4)][Cu(ohpma)]·H_(2)O 1(ohpma=deprotonated N-(2-hydoxyphenyl)oxamic acid)exhibiting both 1D antiferromagnetic and nonlinear optical properties,which are both originated from the same polar[Cu(C_(8)H_(4)NO_(4))]magnetic units,has been successfully synthesized by evaporation at room temperature.Bis-polydentate nature of the(ohpma)3−ligand with constrained tridentate and bidentate coordination sites conducts Cu^(2+)ions coordinating in different geometries and forms 1D chains along the c axis,which are further separated by the[N(C_(3)H_(7))_(4)]+cations.And the 1D magnetic chains further exhibit noncentrosymmetric polar arrangement.Nonlinear optical study shows polar compound 1 exhibits a discernible second-harmonic generation(SHG)efficiency and the calculation of the partial density of states indicates that the SHG efficiency of 1 is mainly originated from the polar[Cu(C_(8)H_(4)NO_(4))]magnetic units.Moreover,magnetic susceptibility shows a broad maximum around 70 K with strong intrachain interaction of J/k B=−113.0 K but no long-range order is observed down to 2 K,suggesting that 1 shows a good 1D magnetism.Both good 1D magnetism and SHG activity suggest that 1 could be as a potential multifunctional material,particularly.
基金supported by National Key Research and Development Program of China(2021YFB2801500,2022YFB3206001,and 2023YFB3405600)National Natural Science Foundation of China(62375126,62105149,and 62334001)+2 种基金the Leading Innovation and Entrepreneurship Team Project in Zhejiang(2022R01001)Key Laboratory of Modern Optical Technologies of Education Ministry of China,Soochow UniversityState Key Laboratory of Advanced Optical Communication Systems and Networks,China。
文摘Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers,offering high performance and improved resilience to fabrication variations and temperature fluctuations.However,the current computational spectrometers are impractical because they rely on a brute-force random design approach for disordered structures.This leads to an uncontrollable,non-reproducible,and suboptimal spectrometer performance.In this study,we revolutionize the existing paradigm by introducing a novel inverse design approach for computational spectrometers.By harnessing the power of inverse design,which has traditionally been applied to optimize single devices with simple performance,we successfully adapted it to optimize a complex system comprising multiple correlated components with intricate spectral responses.This approach can be applied to a wide range of structures.We validated this by realizing a spectrometer utilizing a new type of disordered structure based on interferometric effects that exhibits negligible loss and high sensitivity.For a given structure,our approach yielded a remarkable 12-times improvement in the spectral resolution and a four-fold reduction in the cross-correlation between the filters.The resulting spectrometer demonstrated reliable and reproducible performance with the precise determination of structural parameters.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,and 41975037)the National Key Research and Development Programof China(No.2022YFC3700303).
文摘Extreme ozone pollution events(EOPEs)are associated with synoptic weather patterns(SWPs)and pose severe health and ecological risks.However,a systematic investigation of themeteorological causes,transport pathways,and source contributions to historical EOPEs is still lacking.In this paper,the K-means clustering method is applied to identify six dominant SWPs during the warm season in the Yangtze River Delta(YRD)region from 2016 to 2022.It provides an integrated analysis of the meteorological factors affecting ozone pollution in Hefei under different SWPs.Using the WRF-FLEXPART model,the transport pathways(TPPs)and geographical sources of the near-surface air masses in Hefei during EOPEs are investigated.The results reveal that Hefei experienced the highest ozone concentration(134.77±42.82μg/m^(3)),exceedance frequency(46 days(23.23%)),and proportion of EOPEs(21 instances,47.7%)under the control of peripheral subsidence of typhoon(Type 5).Regional southeast winds correlated with the ozone pollution in Hefei.During EOPEs,a high boundary layer height,solar radiation,and temperature;lowhumidity and cloud cover;and pronounced subsidence airflow occurred over Hefei and the broader YRD region.The East-South(E_S)patterns exhibited the highest frequency(28 instances,65.11%).Regarding the TPPs and geographical sources of the near-surface air masses during historical EOPEs.The YRD was the main source for land-originating air masses under E_S patterns(50.28%),with Hefei,southern Anhui,southern Jiangsu,and northern Zhejiang being key contributors.These findings can help improve ozone pollution early warning and control mechanisms at urban and regional scales.
基金supported by the National Natural Science Foundation of China(No.82071078,82370939)the Shaanxi Provincial High-level Talent Program and Young Talent Support Plan of Xi’an Jiaotong University.
文摘Tissue interactions play a crucial role in tooth development.Notably,extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential.Here,we revealed that mandible extracellular vesicles could modulate the proliferation and differentiation of dental mesenchymal cells by regulating the histone demethylase KDM2B.Further investigation showed that mandible derived extracellular vesicles could deliver miR-206 to KDM2B,thereby regulating tooth development.An animal study demonstrated that the miR-206/KDM2B pathway affected tooth morphogenesis and mineralization after eight weeks of subcutaneous transplantation in nude mice.In conclusion,this study suggested that the mandible played a critical role in tooth morphogenesis and mineralization,which could be a potential therapeutic target for abnormal tooth development and an alternative model for tooth regeneration.
基金supported by the National Natural Science Foundation of China(Nos.92059112,82072821 and 31470964)University of Shanghai for Science and Technology(No.10-21302-405)+1 种基金the Program of Shanghai Academic/Technology Research Leader(No.22XD1404700)the Shanghai Songjiang Municipal Science and Technology Commission Natural Science Foundation(No.20SJKJGG250)。
文摘The induction of antitumor immunity by tumor antigens released from cancer cells following regional photothermal therapy(PTT)alone may not be adequate for achieving complete tumor elimination.Combination therapy with immune adjuvants enhances antitumor immune responses,but faces challenges such as targeting deficiencies,systemic toxicity,and uncontrolled release behavior.Herein,we introduce a novel dual-functional hybrid membrane nanoparticle(HM-NP)incorporating gold nanorods(GNRs)and a thermally responsive polymer shell.HM-NP demonstrates exceptional homotypic targeting efficacy beneath the tumor cell membrane(TM),leading to substantial tumor accumulation.Upon in situ near-infrared(NIR)stimulation,GNRs within HM-NP generate heat,triggering the burst release of HM by facilitating the contraction and disintegration of the thermally responsive polymer shell.HM-NP exhibits excellent photothermal conversion efficiency under NIR irradiation,enabling effective destruction of primary tumors,release of tumor-associated antigens,and stimulation of potent anti-cancer immune.Simultaneously,the immune responses are strengthened by TM and Escherichia coli membrane(EM)through promoting the maturation of antigen presenting cells(APCs)and activating cytotoxic T lymphocytes(CTLs).Moreover,the use of polymer shells enables efficient cancer therapy with minimal host clearance and adverse effects.This photothermally triggered immunotherapy holds promise for precise and personalized treatment of tumors.
基金supported by the National Key Research and Development Project of China(Nos.2022YFC3703502 and 2018YFC0213201)the National Natural Science Foundation of China(No.42105133)the Local Service Project of Hefei(No.2020BFFFD01804).
文摘Studying the spatiotemporal distribution and transboundary transport of aerosols,NO_(2),SO_(2),and HCHO in typical regions is crucial for understanding regional pollution causes.In a 2-year study using multi-axis differential optical absorption spectroscopy in Qingdao,Shanghai,Xi’an,and Kunming,we investigated pollutant distribution and transport across Eastern China-Ocean,Tibetan Plateau-Central and Eastern China,and China-Southeast Asia interfaces.First,pollutant distributionwas analyzed.Kunming,frequently clouded and misty,exhibited consistently high aerosol optical depth throughout the year.In Qingdao and Shanghai,NO_(2)and SO_(2),as well as SO_(2)in Xi’an,increased in winter.Elevated HCHO in summer in Shanghai and Xi’an,especially Xi’an,suggests potential ozone pollution issues.Subsequently,pollutant transportation across interfaces was studied.At the Eastern China-Ocean interface,the gas transport flux was the largest among other interfaces,with the outflux exceeding the influx,especially in winter and spring.The input of pollutants from the Tibetan Plateau to central-eastern Chinawas larger than the output in winter and spring,with SO_(2)having the highest transport flux in winter.The pollution input from Southeast Asia to China significantly exceeded the output,with spring and winter inputs being 3.22 and 3.03 times the output,respectively.Lastly,the transportation characteristics of a pollution event at Kunming were studied.During this period,pollutants were transported from west to east,with themaximum SO_(2)transport flux at an altitude of 2.87 km equaling 27.74μg/(m^(2)·s).It is speculated that this pollution was caused by the transport from Southeast Asian countries to Kunming.