0 INTRODUCTION Orogenic belts are commonly built by multiple-stage processes involving oceanic subduction and continental collisions that result in the generation of magma with distinct geochemical compositions,as exe...0 INTRODUCTION Orogenic belts are commonly built by multiple-stage processes involving oceanic subduction and continental collisions that result in the generation of magma with distinct geochemical compositions,as exemplified by Central Asian Orogenic Belts(e.g.,Wang et al.,2024;Yin et al.,2024;Xiao et al.,2005)and the Tethyan tectonic domains(e.g.,Chen et al.,2024;Li et al.,2024;Tao et al.,2024a;Gehrels et al.,2011;Yin and Harrison,2000).展开更多
Basaltic volcanic conglomerates near the Wulgai village in Balochistan occur in the undivided sedimentary rock unit of the Bagh complex which is the mélange zone beneath the Muslim Bagh ophiolite. The presence of...Basaltic volcanic conglomerates near the Wulgai village in Balochistan occur in the undivided sedimentary rock unit of the Bagh complex which is the mélange zone beneath the Muslim Bagh ophiolite. The presence of Middle Triassic grey radiolarian chert within the upper and lower horizon of the conglomerates suggests that the lavas, from which these conglomerates were principally derived, were eroded and re-deposited in the Middle Triassic. The Wulgai conglomerate contains several textural and mineralogical varieties of volcanic rocks, such as porphyritic, glomerophyric, intersertal and vitrophyric basalts. The main minerals identified in these samples are augite, olivine, plagioclase(An35–78) leucite and nosean, with apatite ilmenite, magnetite and hematite occurring as accessory minerals. These rocks are mildly to strongly-alkaline with low Mg~# and low Cr, Ni and Co contents suggesting that their parent magma had undergone considerable fractionation prior to eruption. Trace element-enriched mantle-normalized patterns with marked positive Nb anomalies are consistent with 10%–15% melting of an enriched mantle source in a within-plate tectonic setting. It is proposed that this Middle Triassic intra-plate volcanism may represent mantle plume-derived melts related to the Late Triassic rifting of micro-continental blocks(including Afghan, Iran, Karakorum and Lhasa) from the northern margin of Gondwana.展开更多
基金supported by the National Key Research and Development Project(No.2022YFC2903302)the Second Tibet Plateau Scientific Expedition and Research Program(STEP),(No.2019QZKK0802)+2 种基金the National Natural Science Foundation of China(No.42361144841)the Chinese Academy of Geological Sciences Basal Research Fund(No.JKYZD202402)the Scientific Research Fund Project of BGRIMM Technology Group(No.JTKY202427822)。
文摘0 INTRODUCTION Orogenic belts are commonly built by multiple-stage processes involving oceanic subduction and continental collisions that result in the generation of magma with distinct geochemical compositions,as exemplified by Central Asian Orogenic Belts(e.g.,Wang et al.,2024;Yin et al.,2024;Xiao et al.,2005)and the Tethyan tectonic domains(e.g.,Chen et al.,2024;Li et al.,2024;Tao et al.,2024a;Gehrels et al.,2011;Yin and Harrison,2000).
文摘Basaltic volcanic conglomerates near the Wulgai village in Balochistan occur in the undivided sedimentary rock unit of the Bagh complex which is the mélange zone beneath the Muslim Bagh ophiolite. The presence of Middle Triassic grey radiolarian chert within the upper and lower horizon of the conglomerates suggests that the lavas, from which these conglomerates were principally derived, were eroded and re-deposited in the Middle Triassic. The Wulgai conglomerate contains several textural and mineralogical varieties of volcanic rocks, such as porphyritic, glomerophyric, intersertal and vitrophyric basalts. The main minerals identified in these samples are augite, olivine, plagioclase(An35–78) leucite and nosean, with apatite ilmenite, magnetite and hematite occurring as accessory minerals. These rocks are mildly to strongly-alkaline with low Mg~# and low Cr, Ni and Co contents suggesting that their parent magma had undergone considerable fractionation prior to eruption. Trace element-enriched mantle-normalized patterns with marked positive Nb anomalies are consistent with 10%–15% melting of an enriched mantle source in a within-plate tectonic setting. It is proposed that this Middle Triassic intra-plate volcanism may represent mantle plume-derived melts related to the Late Triassic rifting of micro-continental blocks(including Afghan, Iran, Karakorum and Lhasa) from the northern margin of Gondwana.