During the automated placement process of dry fibers,the positioning and fixation of dry fiber gauze belts are achieved by spraying setting agents.The amount of the setting agent is difficult to control when it is spr...During the automated placement process of dry fibers,the positioning and fixation of dry fiber gauze belts are achieved by spraying setting agents.The amount of the setting agent is difficult to control when it is sprayed manually.Furthermore,it can also affect the permeability of the preform,resin injection and the quality of the vacuum assisted resin infusion(VARI)molding,resulting in a decrease in the mechanical properties of composite materials.This study utilizes dry fiber automated placement equipment and an automated spraying system to manufacture preform structures,followed by VARI process to prepare composite samples with varying setting agent contents.Subsequently,mechanical characterization including interlaminar shear,bending and tensile testing is conducted to investigate the influence of setting agent content on both the manufacturing process and the mechanical properties of composite products.The results show that the interlaminar shear strength,bending strength and tensile strength of the sample gradually decrease with the increase of the content of the setting agent.The optimal setting agent content for automated laying of dry fiber is determined to be 4%-6%,balancing the preformed body’s layup quality and its impact on mechanical properties.Compared with agent-free samples,this range results in reductions of 3% in interlaminar shear strength,9% in bending strength,11% in bending modulus,and 13%-16% in tensile strength.展开更多
In this paper, a novel vibration-suppression open-loop control method for multi-mass system is proposed, which uses two-stage velocity compensating algorithm and fuzzy I + P control- ler. This compensating method is ...In this paper, a novel vibration-suppression open-loop control method for multi-mass system is proposed, which uses two-stage velocity compensating algorithm and fuzzy I + P control- ler. This compensating method is based on model-based control theory in order to provide a damp- ing effect on the system mechanical part. The mathematical model of multi-mass system is built and reduced to estimate the velocities of masses. The velocity difference between adjacent masses is cal- culated dynamically. A 3-mass system is regarded as the composition of two 2-mass systems in order to realize the two-stage compensating algorithm. Instead of using a typical PI controller in the velocity compensating loop, a fuzzy I + P controller is designed and its input variables are decided according to their impact on the system, which is different from the conventional fuzzy PID controller designing rules. Simulations and experimental results show that the proposed veloc- ity compensating method is effective in suppressing vibration on a 3-mass system and it has a better performance when the designed fuzzy I + P controller is utilized in the control system.展开更多
基金supported by Jiangsu Provincial Key Research and Development Program(No.BE2023014-4).
文摘During the automated placement process of dry fibers,the positioning and fixation of dry fiber gauze belts are achieved by spraying setting agents.The amount of the setting agent is difficult to control when it is sprayed manually.Furthermore,it can also affect the permeability of the preform,resin injection and the quality of the vacuum assisted resin infusion(VARI)molding,resulting in a decrease in the mechanical properties of composite materials.This study utilizes dry fiber automated placement equipment and an automated spraying system to manufacture preform structures,followed by VARI process to prepare composite samples with varying setting agent contents.Subsequently,mechanical characterization including interlaminar shear,bending and tensile testing is conducted to investigate the influence of setting agent content on both the manufacturing process and the mechanical properties of composite products.The results show that the interlaminar shear strength,bending strength and tensile strength of the sample gradually decrease with the increase of the content of the setting agent.The optimal setting agent content for automated laying of dry fiber is determined to be 4%-6%,balancing the preformed body’s layup quality and its impact on mechanical properties.Compared with agent-free samples,this range results in reductions of 3% in interlaminar shear strength,9% in bending strength,11% in bending modulus,and 13%-16% in tensile strength.
基金supported by the Fundamental Research Funds for the Central Universities of China
文摘In this paper, a novel vibration-suppression open-loop control method for multi-mass system is proposed, which uses two-stage velocity compensating algorithm and fuzzy I + P control- ler. This compensating method is based on model-based control theory in order to provide a damp- ing effect on the system mechanical part. The mathematical model of multi-mass system is built and reduced to estimate the velocities of masses. The velocity difference between adjacent masses is cal- culated dynamically. A 3-mass system is regarded as the composition of two 2-mass systems in order to realize the two-stage compensating algorithm. Instead of using a typical PI controller in the velocity compensating loop, a fuzzy I + P controller is designed and its input variables are decided according to their impact on the system, which is different from the conventional fuzzy PID controller designing rules. Simulations and experimental results show that the proposed veloc- ity compensating method is effective in suppressing vibration on a 3-mass system and it has a better performance when the designed fuzzy I + P controller is utilized in the control system.