In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in r...In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in ranges of elevated temperatures (423-573 K) and strain rates (0.001-1 s^-1). Plastic instability is evident during the deformation which is in the form of serrated flow; serrated yielding is attributed to the locking of mobile dislocations by the Mg and Li atoms which diffuse during the deformation. The relationships between flow stress, strain rate and deformation temperature were analyzed and the deformation activation energy and some basic material factors at different strains were calculated using the Arrhenius equation. The effects of temperature and strain rate on deformation behavior were represented using the Zener–Hollomon parameter in an exponent-type equation. To verify the validity of the constitutive model, the predicted values and experimental flow curves under different deformation conditions were compared, the correlation coefficient (0.9970) and average absolute relative error (AARE=4.41%) were calculated. The results indicate that the constitutive model can be used to accurately predict the flow behavior of dual-phase Mg-9Li-3Al-2Sr alloy during high temperature deformation.展开更多
Microstructures and mechanical properties of LZ83?xY alloys containingI-phase andW-phase were investigated by XRD, OM, SEM and EDS. The experimental results show that the content ofI-phase andW-phase changes by varyin...Microstructures and mechanical properties of LZ83?xY alloys containingI-phase andW-phase were investigated by XRD, OM, SEM and EDS. The experimental results show that the content ofI-phase andW-phase changes by varying Zn/Y mass ratio in the LZ83?xY alloys. The cohesion ofI-phase/α-Mg eutectic pockets can enhance the strength in the as-cast LZ83?0.5Y and LZ83?1.0Y alloys, while theW-phase has no obvious strengthening effect on the LZ83?1.5Y alloy. In the extruded alloys, the I-phase andW-phase were extruded into the particles with nanoscale size in theβ-Li matrix phase. The dispersion strengthening of W-phase was more obvious because of the higher volume fraction. The ultimate tensile strength of extruded LZ83?1.5Y alloy is up to 238 MPa while the elongation is up to 20%.展开更多
Hot deformation of cast-homogenized and extruded(in both the extrusion and transverse directions)ZK60 magnesium alloy was conducted using the Gleeble®3500 thermal-mechanical simulation testing system.A new approa...Hot deformation of cast-homogenized and extruded(in both the extrusion and transverse directions)ZK60 magnesium alloy was conducted using the Gleeble®3500 thermal-mechanical simulation testing system.A new approach to model the high temperature constitutive behavior of the alloy was done using two well-known equations(i.e.hyperbolic sine and Ludwig equations).For this approach,the deformation conditions were divided into regimes of low and high temperature and strain rate(four regimes).Constitutive model development was conducted in each regime and the material parameters(P)were evaluated as strain,strain rate and temperature-dependent variables;P(ε,ε,T).Using this approach,the flow curves were predicted with high accuracy relative to the experimental measurements.Moreover,detailed information on the evolution of hot deformation activation energy was obtained using the modified hyperbolic sine model.Using the modified Ludwig equation,details of strain hardening and strain rate sensitivity of the ZK60 material during hot deformation were obtained.展开更多
The effect of set-back distance on the thermo-mechanical behavior of the strip during twin roll casting(TRC)of an AZ31 magnesium alloy was modeled using finite element method(FEM).Model validation was done by comparin...The effect of set-back distance on the thermo-mechanical behavior of the strip during twin roll casting(TRC)of an AZ31 magnesium alloy was modeled using finite element method(FEM).Model validation was done by comparing the predicted and measured exit strip surface temperature as well as the secondary dendrite arm spacing(SDAS)through the thickness of the sheet to those measured during experiments.Model results showed as the set-back distance increases,the strip exit temperature decreases and the solidification front moves toward the entry of the roll gap.The cast strip also experiences more plastic deformation and consequently,the normal stress on the strip surface and effective strain at the strip center-line increase.Moreover,higher separating forces were predicted for longer set-back distances.Model predictions showed that changing the set-back distance by varying the final thickness has a more significant effect on the temperature and stress-strain fields than altering the nozzle opening height.展开更多
Friction stir processing(FSP)was employed as a post-printing surface modification technique to enhance surface properties of arc-directed energy deposited 316 L austenitic stainless-steel parts.Corrosion properties an...Friction stir processing(FSP)was employed as a post-printing surface modification technique to enhance surface properties of arc-directed energy deposited 316 L austenitic stainless-steel parts.Corrosion properties and passivity of stir zone and base metal were investigated in 3.5 wt.%NaCl solution.Results reveal a gradual improvement in corrosion protection ability of formed passive film on the alloy's surface over time.Specifically,FSPed region exhibited superior passive behavior and uniform corrosion resistance compared to base metal.This improvement was attributed to a more homogeneous microstructure of stir zone,which hindered micro-galvanic coupling effect.However,it was observed that FSP-treatment did not effectively impede the propagation of pitting corrosion.展开更多
基金Projects(CDJZR14130007106112015CDJXY130011)supported by Fundamental Research Funds for the Central Universities,China
文摘In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in ranges of elevated temperatures (423-573 K) and strain rates (0.001-1 s^-1). Plastic instability is evident during the deformation which is in the form of serrated flow; serrated yielding is attributed to the locking of mobile dislocations by the Mg and Li atoms which diffuse during the deformation. The relationships between flow stress, strain rate and deformation temperature were analyzed and the deformation activation energy and some basic material factors at different strains were calculated using the Arrhenius equation. The effects of temperature and strain rate on deformation behavior were represented using the Zener–Hollomon parameter in an exponent-type equation. To verify the validity of the constitutive model, the predicted values and experimental flow curves under different deformation conditions were compared, the correlation coefficient (0.9970) and average absolute relative error (AARE=4.41%) were calculated. The results indicate that the constitutive model can be used to accurately predict the flow behavior of dual-phase Mg-9Li-3Al-2Sr alloy during high temperature deformation.
基金Project(2007CB613702)supported by the National Basic Research Program of ChinaProject(CDJZR14130007)supported by the Fundamental Research Funds for the Central Universities,China
文摘Microstructures and mechanical properties of LZ83?xY alloys containingI-phase andW-phase were investigated by XRD, OM, SEM and EDS. The experimental results show that the content ofI-phase andW-phase changes by varying Zn/Y mass ratio in the LZ83?xY alloys. The cohesion ofI-phase/α-Mg eutectic pockets can enhance the strength in the as-cast LZ83?0.5Y and LZ83?1.0Y alloys, while theW-phase has no obvious strengthening effect on the LZ83?1.5Y alloy. In the extruded alloys, the I-phase andW-phase were extruded into the particles with nanoscale size in theβ-Li matrix phase. The dispersion strengthening of W-phase was more obvious because of the higher volume fraction. The ultimate tensile strength of extruded LZ83?1.5Y alloy is up to 238 MPa while the elongation is up to 20%.
基金support of the Natural Sciences and Engineering Research Council of Canada(NSERC),Automotive Partnership Canada(APC)program under APCPJ 459269-13 grant with contributions from CanmetMATERIALS,Multimatic Technical Centre,Ford Motor Company,and Centerline Windsor.
文摘Hot deformation of cast-homogenized and extruded(in both the extrusion and transverse directions)ZK60 magnesium alloy was conducted using the Gleeble®3500 thermal-mechanical simulation testing system.A new approach to model the high temperature constitutive behavior of the alloy was done using two well-known equations(i.e.hyperbolic sine and Ludwig equations).For this approach,the deformation conditions were divided into regimes of low and high temperature and strain rate(four regimes).Constitutive model development was conducted in each regime and the material parameters(P)were evaluated as strain,strain rate and temperature-dependent variables;P(ε,ε,T).Using this approach,the flow curves were predicted with high accuracy relative to the experimental measurements.Moreover,detailed information on the evolution of hot deformation activation energy was obtained using the modified hyperbolic sine model.Using the modified Ludwig equation,details of strain hardening and strain rate sensitivity of the ZK60 material during hot deformation were obtained.
基金The authors of this work would like to appreciate the NSERC(Natural Sciences and Engineering Research Council of Canada)Magnesium Strategic Research Network(MagNET)for the financial support of this work and the Natural Resources Canada Government Materials Laboratory,CanmetMATERIALS located in Hamilton,Ontario for providing the opportunity to perform the experimental parts of the work.The assistance of Dr.M.Kozdras,Dr.A.Javaid,Dr.E.Essadiqi and Mr.G.Birsan and P.Newcombe(from CanmetMATERIALS)in processing the experimental data is gratefully acknowledged.
文摘The effect of set-back distance on the thermo-mechanical behavior of the strip during twin roll casting(TRC)of an AZ31 magnesium alloy was modeled using finite element method(FEM).Model validation was done by comparing the predicted and measured exit strip surface temperature as well as the secondary dendrite arm spacing(SDAS)through the thickness of the sheet to those measured during experiments.Model results showed as the set-back distance increases,the strip exit temperature decreases and the solidification front moves toward the entry of the roll gap.The cast strip also experiences more plastic deformation and consequently,the normal stress on the strip surface and effective strain at the strip center-line increase.Moreover,higher separating forces were predicted for longer set-back distances.Model predictions showed that changing the set-back distance by varying the final thickness has a more significant effect on the temperature and stress-strain fields than altering the nozzle opening height.
基金the support provided by the Natural Sciences and Engineering Research Council of Canada(NSERC)[grant number RGPIN-2017–04368]the Canada Research Chair program[grant number CRC-2019–00017],Ocean Frontier Institute,and Dalhousie University in making this work possiblethe Herff College of Engineering at the University of Memphis for the financial support of the research through the HCOE-FRG program
文摘Friction stir processing(FSP)was employed as a post-printing surface modification technique to enhance surface properties of arc-directed energy deposited 316 L austenitic stainless-steel parts.Corrosion properties and passivity of stir zone and base metal were investigated in 3.5 wt.%NaCl solution.Results reveal a gradual improvement in corrosion protection ability of formed passive film on the alloy's surface over time.Specifically,FSPed region exhibited superior passive behavior and uniform corrosion resistance compared to base metal.This improvement was attributed to a more homogeneous microstructure of stir zone,which hindered micro-galvanic coupling effect.However,it was observed that FSP-treatment did not effectively impede the propagation of pitting corrosion.