This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe_(3)O_(4) nanoparticles into nylon films using a spray coating technique.Five triboelectric nanogenerator prot...This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe_(3)O_(4) nanoparticles into nylon films using a spray coating technique.Five triboelectric nanogenerator prototypes were created:one with regular nylon and four with nylon/Fe_(3)O_(4) nanocomposites featuring varying nanoparticle densities.The electrical output,measured by open-circuit voltage and short-circuit current,showed significant improvements in the nanocomposite-based triboelectric nanogenerators compared to the nylon-only triboelectric nanogenerator.When a weak magnetic field was applied during nanocomposite preparation,the maximum voltage and current reached 56.3 V and 4.62μA,respectively.Further analysis revealed that the magnetic field during the drying process aligned the magnetic domains,boosting output efficiency.These findings demonstrate the potential of Fe_(3)O_(4) nanoparticles to enhance electrostatic and magnetic interactions in triboelectric nanogenerators,leading to improved energy-harvesting performance.This approach presents a promising strategy for developing high-performance triboelectric nanogenerators for sustainable energy and sensor applications.展开更多
文摘This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe_(3)O_(4) nanoparticles into nylon films using a spray coating technique.Five triboelectric nanogenerator prototypes were created:one with regular nylon and four with nylon/Fe_(3)O_(4) nanocomposites featuring varying nanoparticle densities.The electrical output,measured by open-circuit voltage and short-circuit current,showed significant improvements in the nanocomposite-based triboelectric nanogenerators compared to the nylon-only triboelectric nanogenerator.When a weak magnetic field was applied during nanocomposite preparation,the maximum voltage and current reached 56.3 V and 4.62μA,respectively.Further analysis revealed that the magnetic field during the drying process aligned the magnetic domains,boosting output efficiency.These findings demonstrate the potential of Fe_(3)O_(4) nanoparticles to enhance electrostatic and magnetic interactions in triboelectric nanogenerators,leading to improved energy-harvesting performance.This approach presents a promising strategy for developing high-performance triboelectric nanogenerators for sustainable energy and sensor applications.