As the amount of medical images transmitted over networks and kept on online servers continues to rise,the need to protect those images digitally is becoming increasingly important.However,due to the massive amounts o...As the amount of medical images transmitted over networks and kept on online servers continues to rise,the need to protect those images digitally is becoming increasingly important.However,due to the massive amounts of multimedia and medical pictures being exchanged,low computational complexity techniques have been developed.Most commonly used algorithms offer very little security and require a great deal of communication,all of which add to the high processing costs associated with using them.First,a deep learning classifier is used to classify records according to the degree of concealment they require.Medical images that aren’t needed can be saved by using this method,which cuts down on security costs.Encryption is one of the most effective methods for protecting medical images after this step.Confusion and dispersion are two fundamental encryption processes.A new encryption algorithm for very sensitive data is developed in this study.Picture splitting with image blocks is nowdeveloped by using Zigzag patterns,rotation of the image blocks,and random permutation for scrambling the blocks.After that,this research suggests a Region of Interest(ROI)technique based on selective picture encryption.For the first step,we use an active contour picture segmentation to separate the ROI from the Region of Background(ROB).Permutation and diffusion are then carried out using a Hilbert curve and a Skew Tent map.Once all of the blocks have been encrypted,they are combined to create encrypted images.The investigational analysis is carried out to test the competence of the projected ideal with existing techniques.展开更多
Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of ...Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of the power systems.In order to achieve effective forecasting outcomes with minimumcomputation time,this study develops an improved whale optimization with deep learning enabled load prediction(IWO-DLELP)scheme for energy storage systems(ESS)in smart grid platform.The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS.The proposed IWO-DLELP model initially undergoes pre-processing in two stages namely min-max normalization and feature selection.Besides,partition clustering approach is applied for the decomposition of data into distinct clusters with respect to distance and objective functions.Moreover,IWO with bidirectional gated recurrent unit(BiGRU)model is applied for the prediction of load and the hyperparameters are tuned by the use of IWO algorithm.The experiment analysis reported the enhanced results of the IWO-DLELP model over the recent methods interms of distinct evaluation measures.展开更多
The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for ...The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods.Medical imaging has become a crucial component in the disease diagnosis process,whereas X-rays and Computed Tomography(CT)scan imaging are employed in a deep network to diagnose the diseases.In general,four steps are followed in image-based diagnostics and disease classification processes by making use of the neural networks,such as network training,feature extraction,model performance testing and optimal feature selection.The current research article devises a Chaotic Flower Pollination Algorithm with a Deep Learning-Driven Fusion(CFPADLDF)approach for detecting and classifying COVID-19.The presented CFPA-DLDF model is developed by integrating two DL models to recognize COVID-19 in medical images.Initially,the proposed CFPA-DLDF technique employs the Gabor Filtering(GF)approach to pre-process the input images.In addition,a weighted voting-based ensemble model is employed for feature extraction,in which both VGG-19 and the MixNet models are included.Finally,the CFPA with Recurrent Neural Network(RNN)model is utilized for classification,showing the work’s novelty.A comparative analysis was conducted to demonstrate the enhanced performance of the proposed CFPADLDF model,and the results established the supremacy of the proposed CFPA-DLDF model over recent approaches.展开更多
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri...Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning.展开更多
Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid ...Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid solutions.Besides,unmanned aerial vehicles(UAV)developed a hot research topic in the smart city environment.Despite the benefits of UAVs,security remains a major challenging issue.In addition,deep learning(DL)enabled image classification is useful for several applications such as land cover classification,smart buildings,etc.This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification(MDLS-UAVIC)model in a smart city environment.Themajor purpose of the MDLS-UAVIC algorithm is to securely encrypt the images and classify them into distinct class labels.The proposedMDLS-UAVIC model follows a two-stage process:encryption and image classification.The encryption technique for image encryption effectively encrypts the UAV images.Next,the image classification process involves anXception-based deep convolutional neural network for the feature extraction process.Finally,shuffled shepherd optimization(SSO)with a recurrent neural network(RNN)model is applied for UAV image classification,showing the novelty of the work.The experimental validation of the MDLS-UAVIC approach is tested utilizing a benchmark dataset,and the outcomes are examined in various measures.It achieved a high accuracy of 98%.展开更多
文摘As the amount of medical images transmitted over networks and kept on online servers continues to rise,the need to protect those images digitally is becoming increasingly important.However,due to the massive amounts of multimedia and medical pictures being exchanged,low computational complexity techniques have been developed.Most commonly used algorithms offer very little security and require a great deal of communication,all of which add to the high processing costs associated with using them.First,a deep learning classifier is used to classify records according to the degree of concealment they require.Medical images that aren’t needed can be saved by using this method,which cuts down on security costs.Encryption is one of the most effective methods for protecting medical images after this step.Confusion and dispersion are two fundamental encryption processes.A new encryption algorithm for very sensitive data is developed in this study.Picture splitting with image blocks is nowdeveloped by using Zigzag patterns,rotation of the image blocks,and random permutation for scrambling the blocks.After that,this research suggests a Region of Interest(ROI)technique based on selective picture encryption.For the first step,we use an active contour picture segmentation to separate the ROI from the Region of Background(ROB).Permutation and diffusion are then carried out using a Hilbert curve and a Skew Tent map.Once all of the blocks have been encrypted,they are combined to create encrypted images.The investigational analysis is carried out to test the competence of the projected ideal with existing techniques.
文摘Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of the power systems.In order to achieve effective forecasting outcomes with minimumcomputation time,this study develops an improved whale optimization with deep learning enabled load prediction(IWO-DLELP)scheme for energy storage systems(ESS)in smart grid platform.The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS.The proposed IWO-DLELP model initially undergoes pre-processing in two stages namely min-max normalization and feature selection.Besides,partition clustering approach is applied for the decomposition of data into distinct clusters with respect to distance and objective functions.Moreover,IWO with bidirectional gated recurrent unit(BiGRU)model is applied for the prediction of load and the hyperparameters are tuned by the use of IWO algorithm.The experiment analysis reported the enhanced results of the IWO-DLELP model over the recent methods interms of distinct evaluation measures.
文摘The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods.Medical imaging has become a crucial component in the disease diagnosis process,whereas X-rays and Computed Tomography(CT)scan imaging are employed in a deep network to diagnose the diseases.In general,four steps are followed in image-based diagnostics and disease classification processes by making use of the neural networks,such as network training,feature extraction,model performance testing and optimal feature selection.The current research article devises a Chaotic Flower Pollination Algorithm with a Deep Learning-Driven Fusion(CFPADLDF)approach for detecting and classifying COVID-19.The presented CFPA-DLDF model is developed by integrating two DL models to recognize COVID-19 in medical images.Initially,the proposed CFPA-DLDF technique employs the Gabor Filtering(GF)approach to pre-process the input images.In addition,a weighted voting-based ensemble model is employed for feature extraction,in which both VGG-19 and the MixNet models are included.Finally,the CFPA with Recurrent Neural Network(RNN)model is utilized for classification,showing the work’s novelty.A comparative analysis was conducted to demonstrate the enhanced performance of the proposed CFPADLDF model,and the results established the supremacy of the proposed CFPA-DLDF model over recent approaches.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number RI-44-0444.
文摘Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning.
基金Deputyship for Research&Inno-vation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number RI-44-0446.
文摘Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid solutions.Besides,unmanned aerial vehicles(UAV)developed a hot research topic in the smart city environment.Despite the benefits of UAVs,security remains a major challenging issue.In addition,deep learning(DL)enabled image classification is useful for several applications such as land cover classification,smart buildings,etc.This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification(MDLS-UAVIC)model in a smart city environment.Themajor purpose of the MDLS-UAVIC algorithm is to securely encrypt the images and classify them into distinct class labels.The proposedMDLS-UAVIC model follows a two-stage process:encryption and image classification.The encryption technique for image encryption effectively encrypts the UAV images.Next,the image classification process involves anXception-based deep convolutional neural network for the feature extraction process.Finally,shuffled shepherd optimization(SSO)with a recurrent neural network(RNN)model is applied for UAV image classification,showing the novelty of the work.The experimental validation of the MDLS-UAVIC approach is tested utilizing a benchmark dataset,and the outcomes are examined in various measures.It achieved a high accuracy of 98%.