Magmatic zircon in high-grade metamorphic rocks is often characterized by complex textures as revealed by cathodoluminenscence (CL) that result from multiple episodes of recrystallization, over- growth, Pb-loss and ...Magmatic zircon in high-grade metamorphic rocks is often characterized by complex textures as revealed by cathodoluminenscence (CL) that result from multiple episodes of recrystallization, over- growth, Pb-loss and modifications through fluid-induced disturbances of the crystal structure and the original U-Th-Pb isotopic systematics. Many of these features can be recognized in 2-dimensional CL images, and isotopic analysis of such domains using a high resolution ion-microprobe with only shallow penetration of the zircon surface may be able to reconstruct much of the magmatic and complex post- magmatic history of such grains. In particular it is generally possible to find original magmatic domains yielding concordant ages. In contrast, destructive techniques such as LA-ICP-MS consume a large volume, leave a deep crater in the target grain, and often sample heterogeneous domains that are not visible and thus often yield discordant results which are difficult to interpret. We provide examples of complex magmatic zircon from a southern Indian granulite terrane where SHRIMP lI and LA-ICP-MS analyses are compared. The SHRIMP data are shown to be more precise and reliable, and we caution against the use of LA-ICP-MS in deciphering the chronology of complex zircons from high-grade terranes.展开更多
The Central Hebei Basin (CHB) is one of the largest sedimentary basins in the North China Craton, extending in a northeast-southwest direction with an area of 〉350 km2. We carried out SHRIMP zircon dating, Hf-in-zi...The Central Hebei Basin (CHB) is one of the largest sedimentary basins in the North China Craton, extending in a northeast-southwest direction with an area of 〉350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedi- mentary rocks recovered from drill holes that penetrated into the basement of the CHB, Two samples of gneissic granodiorite (XG1-1) and gneissic quartz diorite 048-1) have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41-2.51 and ~2.5 Ga, respec- tively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher REE contents and lower Eu/Eu* and (La/Yb)n values. Two metasedimentary samples (MG1, H5) mainly contain ~2,5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins have eHf (2.5 Ga) values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2,9 Ga, respectively, Therefore, ~2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.展开更多
The Ukwortung area of the Obudu Plateau exposes high-grade metamorphic rocks of upper amphibolite to granulite facies. Zircon grains from three locations of Southwest Obudu Plateau were dated by the Pb-Pb dating metho...The Ukwortung area of the Obudu Plateau exposes high-grade metamorphic rocks of upper amphibolite to granulite facies. Zircon grains from three locations of Southwest Obudu Plateau were dated by the Pb-Pb dating method. This single zircon radiometric dating method confirms the occurrence of Mesoproterozoic crust in the southeastern Nigeria basement complex. The pyroxene gneiss (granulite facies) sample from Biereberi near Ukpe yielded a mean age of 2061.4±0.4 Ma, suggesting the presence of Paleoproterozoic crust. The combined 207Pb/206Pb ratios from the garnet-biotite gneiss in the area gave a mean age of 1794.4±0.4 Ma. This further confirms the pres-ence of Paleoproterozoic crustal components within the Obudu Plateau. The Mesoproterozoic (1548.8±0.5 Ma) and Neoproterozoic (619.8±0.9 Ma) ages were obtained from two populations of zircon grains from the leucogranite in Okordem, Southwest Obudu. These "signatures" collaborate the occurrence of Mesoproterozoic ages in the Afar region and Cameroon basements along with the southeastern Nigerian basement complex, constituting the major portion of the West Central African mobile belt. The zircon age of 1794.4±0.4 Ma may probably be the maximum depositional age of the meta-sediment (garnet-biotite gneiss) and the age of 1548.8±0.5 Ma may be interpreted as the time of emplacement of the granitoid. The Neoproterozoic age (619.8±0.9 Ma) probably records the metamorphic event that was prevalent during the Pan-African period and thus affected the area.展开更多
基金funded by the German Science Foundation(DFG),grant KR590/94-1 to AK
文摘Magmatic zircon in high-grade metamorphic rocks is often characterized by complex textures as revealed by cathodoluminenscence (CL) that result from multiple episodes of recrystallization, over- growth, Pb-loss and modifications through fluid-induced disturbances of the crystal structure and the original U-Th-Pb isotopic systematics. Many of these features can be recognized in 2-dimensional CL images, and isotopic analysis of such domains using a high resolution ion-microprobe with only shallow penetration of the zircon surface may be able to reconstruct much of the magmatic and complex post- magmatic history of such grains. In particular it is generally possible to find original magmatic domains yielding concordant ages. In contrast, destructive techniques such as LA-ICP-MS consume a large volume, leave a deep crater in the target grain, and often sample heterogeneous domains that are not visible and thus often yield discordant results which are difficult to interpret. We provide examples of complex magmatic zircon from a southern Indian granulite terrane where SHRIMP lI and LA-ICP-MS analyses are compared. The SHRIMP data are shown to be more precise and reliable, and we caution against the use of LA-ICP-MS in deciphering the chronology of complex zircons from high-grade terranes.
基金supported by the Major State Basic Research Program of the People's Republic of China(Grant No.2012CB416600)the National Natural Science Foundation of China(Grant No.40672127)the Key Program of the Ministry of Land and Resources of China(Grant Nos.1212010811033,12120113013700)
文摘The Central Hebei Basin (CHB) is one of the largest sedimentary basins in the North China Craton, extending in a northeast-southwest direction with an area of 〉350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedi- mentary rocks recovered from drill holes that penetrated into the basement of the CHB, Two samples of gneissic granodiorite (XG1-1) and gneissic quartz diorite 048-1) have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41-2.51 and ~2.5 Ga, respec- tively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher REE contents and lower Eu/Eu* and (La/Yb)n values. Two metasedimentary samples (MG1, H5) mainly contain ~2,5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins have eHf (2.5 Ga) values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2,9 Ga, respectively, Therefore, ~2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.
文摘The Ukwortung area of the Obudu Plateau exposes high-grade metamorphic rocks of upper amphibolite to granulite facies. Zircon grains from three locations of Southwest Obudu Plateau were dated by the Pb-Pb dating method. This single zircon radiometric dating method confirms the occurrence of Mesoproterozoic crust in the southeastern Nigeria basement complex. The pyroxene gneiss (granulite facies) sample from Biereberi near Ukpe yielded a mean age of 2061.4±0.4 Ma, suggesting the presence of Paleoproterozoic crust. The combined 207Pb/206Pb ratios from the garnet-biotite gneiss in the area gave a mean age of 1794.4±0.4 Ma. This further confirms the pres-ence of Paleoproterozoic crustal components within the Obudu Plateau. The Mesoproterozoic (1548.8±0.5 Ma) and Neoproterozoic (619.8±0.9 Ma) ages were obtained from two populations of zircon grains from the leucogranite in Okordem, Southwest Obudu. These "signatures" collaborate the occurrence of Mesoproterozoic ages in the Afar region and Cameroon basements along with the southeastern Nigerian basement complex, constituting the major portion of the West Central African mobile belt. The zircon age of 1794.4±0.4 Ma may probably be the maximum depositional age of the meta-sediment (garnet-biotite gneiss) and the age of 1548.8±0.5 Ma may be interpreted as the time of emplacement of the granitoid. The Neoproterozoic age (619.8±0.9 Ma) probably records the metamorphic event that was prevalent during the Pan-African period and thus affected the area.