As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalen...As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalent in today’s digital world.In this study,we propose two high-performance R solutions for GWR via Multi-core Parallel(MP)and Compute Unified Device Architecture(CUDA)techniques,respectively GWR-MP and GWR-CUDA.We compared GWR-MP and GWR-CUDA with three existing solutions available in Geographically Weighted Models(GWmodel),Multi-scale GWR(MGWR)and Fast GWR(FastGWR).Results showed that all five solutions perform differently across varying sample sizes,with no single solution a clear winner in terms of computational efficiency.Specifically,solutions given in GWmodel and MGWR provided acceptable computational costs for GWR studies with a relatively small sample size.For a large sample size,GWR-MP and FastGWR provided coherent solutions on a Personal Computer(PC)with a common multi-core configuration,GWR-MP provided more efficient computing capacity for each core or thread than FastGWR.For cases when the sample size was very large,and for these cases only,GWR-CUDA provided the most efficient solution,but should note its I/O cost with small samples.In summary,GWR-MP and GWR-CUDA provided complementary high-performance R solutions to existing ones,where for certain data-rich GWR studies,they should be preferred.展开更多
The research examines the impact of residential and non-residential demand on facility location planning by comparing results from two location models: travel-to-work (TTW) and Residential model. The TTW model conside...The research examines the impact of residential and non-residential demand on facility location planning by comparing results from two location models: travel-to-work (TTW) and Residential model. The TTW model considers short-term changes in the state of the population due to travel-to-work (non-residential demand). By contrast, the Residential model uses a static snap-shot of the population based on official census estimates (residential demand). Comparison of both models was based on a case study of Emergency Medical Services (EMS) location-allocation planning problem in Leicester and Leicestershire, England, UK. Results showed that the using a static residential demand surface to plan EMS locations overestimates actual demand coverage, compared to a non-residential demand surface. Differences in location-allocation results between the models underscore the importance of accounting for temporal changes in the state of the population when planning locations for health service facilities. The findings of the study have implications for siting of EMS, designing, and planning of EMS service catchments and allocation of prospective demand to EMS sites. The study concludes that consideration of temporal changes in the state of the population is important for reliable and efficient location-allocation planning.展开更多
基金supported by National Key Research and Development Program of China[grant num-ber 2021YFB3900904]the National Natural Science Foundation of China[grant numbers 42071368,U2033216,41871287].
文摘As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalent in today’s digital world.In this study,we propose two high-performance R solutions for GWR via Multi-core Parallel(MP)and Compute Unified Device Architecture(CUDA)techniques,respectively GWR-MP and GWR-CUDA.We compared GWR-MP and GWR-CUDA with three existing solutions available in Geographically Weighted Models(GWmodel),Multi-scale GWR(MGWR)and Fast GWR(FastGWR).Results showed that all five solutions perform differently across varying sample sizes,with no single solution a clear winner in terms of computational efficiency.Specifically,solutions given in GWmodel and MGWR provided acceptable computational costs for GWR studies with a relatively small sample size.For a large sample size,GWR-MP and FastGWR provided coherent solutions on a Personal Computer(PC)with a common multi-core configuration,GWR-MP provided more efficient computing capacity for each core or thread than FastGWR.For cases when the sample size was very large,and for these cases only,GWR-CUDA provided the most efficient solution,but should note its I/O cost with small samples.In summary,GWR-MP and GWR-CUDA provided complementary high-performance R solutions to existing ones,where for certain data-rich GWR studies,they should be preferred.
文摘The research examines the impact of residential and non-residential demand on facility location planning by comparing results from two location models: travel-to-work (TTW) and Residential model. The TTW model considers short-term changes in the state of the population due to travel-to-work (non-residential demand). By contrast, the Residential model uses a static snap-shot of the population based on official census estimates (residential demand). Comparison of both models was based on a case study of Emergency Medical Services (EMS) location-allocation planning problem in Leicester and Leicestershire, England, UK. Results showed that the using a static residential demand surface to plan EMS locations overestimates actual demand coverage, compared to a non-residential demand surface. Differences in location-allocation results between the models underscore the importance of accounting for temporal changes in the state of the population when planning locations for health service facilities. The findings of the study have implications for siting of EMS, designing, and planning of EMS service catchments and allocation of prospective demand to EMS sites. The study concludes that consideration of temporal changes in the state of the population is important for reliable and efficient location-allocation planning.