Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and ...Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.展开更多
A new polarization–interference biomedical diagnostic three-dimensional(3D)Jones-matrix technology with digital Fourier reconstruction of layered maps of optical anisotropy(thesiograms)of dehydrated films(facies)of b...A new polarization–interference biomedical diagnostic three-dimensional(3D)Jones-matrix technology with digital Fourier reconstruction of layered maps of optical anisotropy(thesiograms)of dehydrated films(facies)of biological fluids of human organs is presented and experimentally tested.An original model of layered phase scanning of polycrystalline architectonics of supramolecular networks of biological fluid facies is proposed for the purpose of theoretical justification and prognostic use of the obtained results.On its basis,algorithms of Jones-matrix reconstruction of thesiograms of birefringence and dichroism of facies of synovial fluid,bile and blood are found.As a result,layered thesiograms of linear and circular birefringence and dichroism of facies with different spatial–angular architectonics of supramolecular networks are experimentally obtained for the first time.Within the framework of statistical analysis of experimental data,new objective markers(asymmetry and excess of optical anisotropy parameter distributions)for diagnostics of pathological changes in the optical anisotropy of biological fluid facies were defined and clinically tested.As a result,an excellent level of balanced accuracy of the developed polarization–interference Jones-matrix method of layer-by-layer reconstruction of thesiograms of polycrystalline supramolecular networks in differential diagnostics of bile facies(cholelithiasis),synovial fluid(reactive synovitis–septic arthritis)and whole blood(follicular adenoma–papillary thyroid cancer)was achieved.展开更多
文摘Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.
文摘A new polarization–interference biomedical diagnostic three-dimensional(3D)Jones-matrix technology with digital Fourier reconstruction of layered maps of optical anisotropy(thesiograms)of dehydrated films(facies)of biological fluids of human organs is presented and experimentally tested.An original model of layered phase scanning of polycrystalline architectonics of supramolecular networks of biological fluid facies is proposed for the purpose of theoretical justification and prognostic use of the obtained results.On its basis,algorithms of Jones-matrix reconstruction of thesiograms of birefringence and dichroism of facies of synovial fluid,bile and blood are found.As a result,layered thesiograms of linear and circular birefringence and dichroism of facies with different spatial–angular architectonics of supramolecular networks are experimentally obtained for the first time.Within the framework of statistical analysis of experimental data,new objective markers(asymmetry and excess of optical anisotropy parameter distributions)for diagnostics of pathological changes in the optical anisotropy of biological fluid facies were defined and clinically tested.As a result,an excellent level of balanced accuracy of the developed polarization–interference Jones-matrix method of layer-by-layer reconstruction of thesiograms of polycrystalline supramolecular networks in differential diagnostics of bile facies(cholelithiasis),synovial fluid(reactive synovitis–septic arthritis)and whole blood(follicular adenoma–papillary thyroid cancer)was achieved.