Fabricated through a newly developed hot-warm rolling process,Zn-0.8 Li(wt%)alloy has ideal strength and ductility far beyond the mechanical benchmark of materials for biodegradable stents.Precipitation of needle-like...Fabricated through a newly developed hot-warm rolling process,Zn-0.8 Li(wt%)alloy has ideal strength and ductility far beyond the mechanical benchmark of materials for biodegradable stents.Precipitation of needle-like Zn in primary p-LiZn4 phase is observed in Zn-Li alloy for the first time.Orientation relationship between them can be described as[1-213]β//[2-1-10](Zn),(10-10)βabout 4.5°from(0002)(Zn).Zn grains with an average size of 640 nm exhibit strong basal texture,detected by transmission electron back-scatter diffraction.Li distribution is determined by three-dimensional atom probe,which reveals the formation of nano-sized metastableα-Li2Zn3 precipitates with a number density of 7.16×10^22 m^-3.The fine lamellar Zn+β-LiZn4 structure,sub-micron grains and the nano-sized precipitates contribute to the superior mechanical properties.展开更多
Metal oxide and carbide strengthening molybdenum(Mo)alloys have been designed as promising ad-vanced materials in refractory metals to solve some of the core engineering problems in superalloy ap-plications.Hence,ther...Metal oxide and carbide strengthening molybdenum(Mo)alloys have been designed as promising ad-vanced materials in refractory metals to solve some of the core engineering problems in superalloy ap-plications.Hence,there is a need to summarize the results obtained and evaluate the opportunities for preparing high-performance Mo alloys by strengthening metal oxides and carbides to improve the per-formance characteristics of Mo metal materials.This paper reviews the results of the reported work con-cerning the structure and properties of Mo alloys with different metal oxide and carbide strengthening methods added to Mo matrix.The influence of the doping of La 2 O 3 and Y 2 O 3 particles,ceramic Al 2 O 3 and ZrO 2 particles,and refractory TiC and ZrC carbides particles of Mo alloys are discussed.The impacts of particle morphology,size,distribution and volume fractions of oxide and carbide are analyzed,as well as the specific features of different doping techniques for obtaining high-performance Mo alloys mate-rials.This work will guide future research on the design of high-performance refractory Mo alloys by adding oxides and carbide particles,helping to solve the core issues in the field of superalloy application research.展开更多
基金supported financially by the National Key R&D Program of China (No.2016YFC1102500)the National Natural Science Foundation of China (No.51871020)
文摘Fabricated through a newly developed hot-warm rolling process,Zn-0.8 Li(wt%)alloy has ideal strength and ductility far beyond the mechanical benchmark of materials for biodegradable stents.Precipitation of needle-like Zn in primary p-LiZn4 phase is observed in Zn-Li alloy for the first time.Orientation relationship between them can be described as[1-213]β//[2-1-10](Zn),(10-10)βabout 4.5°from(0002)(Zn).Zn grains with an average size of 640 nm exhibit strong basal texture,detected by transmission electron back-scatter diffraction.Li distribution is determined by three-dimensional atom probe,which reveals the formation of nano-sized metastableα-Li2Zn3 precipitates with a number density of 7.16×10^22 m^-3.The fine lamellar Zn+β-LiZn4 structure,sub-micron grains and the nano-sized precipitates contribute to the superior mechanical properties.
基金the Outstanding Doctorate Dis-sertation Cultivation Fund of Xi’an University of Architecture and Technology(No.160842012)ScientificandTechnologicalInnova-tion Team Project of the Shaanxi Innovation Capability Support Plan,China(No.2022TD-30)+8 种基金the Fok Ying Tung Education Foun-dation(No.171101)Youth Innovation Team of Shaanxi Universi-ties(No.2019-2022)Top young talents project of“Special support program for high-level talents”in the Shaanxi Province(No.2018-2023)Major scientific and technological projects in the Shaanxi Province of China(No.2020ZDZX04-02-01)Service local spe-cial program of education department of Shaanxi province,China(No.21JC016)General Special Scientific Research Program of the Shaanxi Provincial Department of Education(No.21JK0722)the General Projects of Key R&D Program of the Shaanxi Province,China(No.2021GY-209)China Postdoctoral Science Foundation(No.2021M693878)China Postdoctoral Science Foundation(No.2021MD703866).
文摘Metal oxide and carbide strengthening molybdenum(Mo)alloys have been designed as promising ad-vanced materials in refractory metals to solve some of the core engineering problems in superalloy ap-plications.Hence,there is a need to summarize the results obtained and evaluate the opportunities for preparing high-performance Mo alloys by strengthening metal oxides and carbides to improve the per-formance characteristics of Mo metal materials.This paper reviews the results of the reported work con-cerning the structure and properties of Mo alloys with different metal oxide and carbide strengthening methods added to Mo matrix.The influence of the doping of La 2 O 3 and Y 2 O 3 particles,ceramic Al 2 O 3 and ZrO 2 particles,and refractory TiC and ZrC carbides particles of Mo alloys are discussed.The impacts of particle morphology,size,distribution and volume fractions of oxide and carbide are analyzed,as well as the specific features of different doping techniques for obtaining high-performance Mo alloys mate-rials.This work will guide future research on the design of high-performance refractory Mo alloys by adding oxides and carbide particles,helping to solve the core issues in the field of superalloy application research.