In the last decades,a variety of nuclear magnetic resonance(NMR)techniques have been applied with success in the field of advanced functional materials,including the important area of drug delivery.In such field,solid...In the last decades,a variety of nuclear magnetic resonance(NMR)techniques have been applied with success in the field of advanced functional materials,including the important area of drug delivery.In such field,solid-state NMR(SSNMR)is an irreplaceable tool in the arsenal of characterization techniques,offering unique and comprehensive perspectives for the description of chemical structure,spatial connectivity and interfacial phenomena of solid dosage forms.This review focuses on the widespread applications of SSNMR in drug delivery field,an overview of selected case studies is provided,together with possible developments.展开更多
^(23)Na is a nuclear magnetic resonance(NMR)-active isotope with a nuclear spin quantum number of 3/2.^(23)Na relaxation phenomenon is at the core of ^(23)Na NMR measurement and analysis.Due to the dominance of quadru...^(23)Na is a nuclear magnetic resonance(NMR)-active isotope with a nuclear spin quantum number of 3/2.^(23)Na relaxation phenomenon is at the core of ^(23)Na NMR measurement and analysis.Due to the dominance of quadrupolar interaction,the relaxation behavior of ^(23)Na is physically and mathematically more complex than that of a typical spin-1/2 isotope.In this review,we overview the semi-classical Redfield theory for deriving the formulations of ^(23)Na relaxation.We show that the relaxation behaviors of ^(23)Na can be quantitatively described by constructing the spectral density functions based on the second-order perturbation theory.In addition,we summarize the applications of ^(23)Na relaxometry in different research fields,including biomedicine,sodium ion batteries,and quantum information processing.Because sodium is an essential element in our body,food and industrial materials,the research on sodium by ^(23)Na NMR emerges as important future directions.The theoretical and practical understandings on ^(23)Na relaxation are the step stones for mastering advanced ^(23)Na NMR techniques.展开更多
基金This work was supported by National Natural Science Foundation of China(grant no.21922410)National Natural Science Foundation of China(grant no.22072133)+1 种基金Zhejiang Provincial Natural Science Foundation(grant no.LR19B050001)National Key Research and Development Program of China(grant no.2016YFA0203600).
文摘In the last decades,a variety of nuclear magnetic resonance(NMR)techniques have been applied with success in the field of advanced functional materials,including the important area of drug delivery.In such field,solid-state NMR(SSNMR)is an irreplaceable tool in the arsenal of characterization techniques,offering unique and comprehensive perspectives for the description of chemical structure,spatial connectivity and interfacial phenomena of solid dosage forms.This review focuses on the widespread applications of SSNMR in drug delivery field,an overview of selected case studies is provided,together with possible developments.
基金National Natural Science Foundation of China 22275159 and 22072133.Leading Innovation and Entrepreneurship Team of Zhejiang Province 2020R01003.
文摘^(23)Na is a nuclear magnetic resonance(NMR)-active isotope with a nuclear spin quantum number of 3/2.^(23)Na relaxation phenomenon is at the core of ^(23)Na NMR measurement and analysis.Due to the dominance of quadrupolar interaction,the relaxation behavior of ^(23)Na is physically and mathematically more complex than that of a typical spin-1/2 isotope.In this review,we overview the semi-classical Redfield theory for deriving the formulations of ^(23)Na relaxation.We show that the relaxation behaviors of ^(23)Na can be quantitatively described by constructing the spectral density functions based on the second-order perturbation theory.In addition,we summarize the applications of ^(23)Na relaxometry in different research fields,including biomedicine,sodium ion batteries,and quantum information processing.Because sodium is an essential element in our body,food and industrial materials,the research on sodium by ^(23)Na NMR emerges as important future directions.The theoretical and practical understandings on ^(23)Na relaxation are the step stones for mastering advanced ^(23)Na NMR techniques.