The membrane-electrodes assembly(MEA) is the core of the Polymer Electrolyte Fuel Cell(PEFC). It consists of a membrane, catalytic(CL) and gas diffusion layers(GDL). In order to manufacture MEAs with suitable performa...The membrane-electrodes assembly(MEA) is the core of the Polymer Electrolyte Fuel Cell(PEFC). It consists of a membrane, catalytic(CL) and gas diffusion layers(GDL). In order to manufacture MEAs with suitable performance, a hot-pressing procedure is generally used. The relevant parameters are the temperature, pressure and time of hot-pressing. Such variables need to be adjusted as a function of the type of ionomer used in the catalytic layer and membrane. In this study, an evaluation of the temperature of hot-pressing was carried out and its influence on MEA electrochemical performance was assessed. In particular, preparation trials of MEAs were carried out with reinforced experimental membranes based on Aquivion^■ short-side-chain PFSA(by Solvay Specialty Polymers). The membranes were coupled to gas diffusion electrodes, and MEAs were manufactured using different temperatures for the hot-pressing procedure in order to evaluate their influence on the electrochemical performance of PEFCs, in the temperature range of 80–95 °C, with low relative humidity of the reactant gases. The electrochemical performance of the prepared MEAs was tested in a H2/Air 25 cm^2 single cell in terms of polarization curves and accelerated stress test(AST).展开更多
基金funding from the European Union’s Seventh Framework Programme(FP7/2007-2013)
文摘The membrane-electrodes assembly(MEA) is the core of the Polymer Electrolyte Fuel Cell(PEFC). It consists of a membrane, catalytic(CL) and gas diffusion layers(GDL). In order to manufacture MEAs with suitable performance, a hot-pressing procedure is generally used. The relevant parameters are the temperature, pressure and time of hot-pressing. Such variables need to be adjusted as a function of the type of ionomer used in the catalytic layer and membrane. In this study, an evaluation of the temperature of hot-pressing was carried out and its influence on MEA electrochemical performance was assessed. In particular, preparation trials of MEAs were carried out with reinforced experimental membranes based on Aquivion^■ short-side-chain PFSA(by Solvay Specialty Polymers). The membranes were coupled to gas diffusion electrodes, and MEAs were manufactured using different temperatures for the hot-pressing procedure in order to evaluate their influence on the electrochemical performance of PEFCs, in the temperature range of 80–95 °C, with low relative humidity of the reactant gases. The electrochemical performance of the prepared MEAs was tested in a H2/Air 25 cm^2 single cell in terms of polarization curves and accelerated stress test(AST).