The means of orientation is studied in the Vietnamese pygmy dormouse Typhlomys chapensis,a poorly known enigmatic semi-fossorial semi-arboreal rodent.Data on eye structure are presented,which prove that Typhlomys(tran...The means of orientation is studied in the Vietnamese pygmy dormouse Typhlomys chapensis,a poorly known enigmatic semi-fossorial semi-arboreal rodent.Data on eye structure are presented,which prove that Typhlomys(translated as“the blind mouse”)is incapable of object vision:the retina is folded and retains no more than 2500 ganglion cells in the focal plane,and the optic nerve is subject to gliosis.Hence,Typhlomys has no other means for rapid long-range orientation among tree branches other than echolocation.Ultrasonic vocalization recordings at the frequency range of 50-100 kHz support this hypothesis.The vocalizations are represented by bouts of up to 7 more or less evenly-spaced and uniform frequency-modulated sweep-like pulses in rapid succession.Structurally,these sweeps are similar to frequency-modulated ultrasonic echolocation calls of some bat species,but they are too faint to be revealed with a common bat detector.When recording video simultaneously with the ultrasonic audio,a significantly greater pulse rate during locomotion compared to that of resting animals has been demonstrated.Our findings of locomotion-associated ultrasonic vocalization in a fast-climbing but weakly-sighted small mammal ecotype add support to the“echolocation-first theory”of pre-flight origin of echolocation in bats.展开更多
基金approved by the Committee of Bio-ethics of the Lomonosov Moscow State University(research protocol no.2011-36)Video processing was performed with support of the Russian Science Foundation(project 14-50-00029“Scientific basis of the national biobank-depository of the living systems”)+1 种基金Acoustic analysis was supported by the Russian Science Foundation(project 14-14-00237)the Program of Basic Research of the Presidium of the Russian Academy of Sciences“Wildlife:Current Status and Problems of Development.”。
文摘The means of orientation is studied in the Vietnamese pygmy dormouse Typhlomys chapensis,a poorly known enigmatic semi-fossorial semi-arboreal rodent.Data on eye structure are presented,which prove that Typhlomys(translated as“the blind mouse”)is incapable of object vision:the retina is folded and retains no more than 2500 ganglion cells in the focal plane,and the optic nerve is subject to gliosis.Hence,Typhlomys has no other means for rapid long-range orientation among tree branches other than echolocation.Ultrasonic vocalization recordings at the frequency range of 50-100 kHz support this hypothesis.The vocalizations are represented by bouts of up to 7 more or less evenly-spaced and uniform frequency-modulated sweep-like pulses in rapid succession.Structurally,these sweeps are similar to frequency-modulated ultrasonic echolocation calls of some bat species,but they are too faint to be revealed with a common bat detector.When recording video simultaneously with the ultrasonic audio,a significantly greater pulse rate during locomotion compared to that of resting animals has been demonstrated.Our findings of locomotion-associated ultrasonic vocalization in a fast-climbing but weakly-sighted small mammal ecotype add support to the“echolocation-first theory”of pre-flight origin of echolocation in bats.