Excavation damage under high in situ stress depends largely upon the potential block size associated with any violent ejection.The size and shape of the dynamic instability are largely controlled by the location,orien...Excavation damage under high in situ stress depends largely upon the potential block size associated with any violent ejection.The size and shape of the dynamic instability are largely controlled by the location,orientation and extent of the pre-existing geological discontinuities.A new methodology is presented in which the rock mass demand can be expressed in terms of the mass in tonnes of unstable rock that is ejected per unit area of the excavation surface where failure occurs.A probabilistic approach has been implemented to estimate the potential rock mass instabilities and their associated static and dynamic demands.The new methodology considers that the strain energy released by the rock mass during violent stress-driven failure is largely converted into kinetic energy of ejection for blocks.The estimated dynamic demand has been favourably compared with observations of rock mass damage in a number of underground excavations.展开更多
There is evidence that a substantial part of genetic predisposition to prostate cancer (PCa) may be due to lower penetrance genes which are found by genome-wide association studies. We have recently conducted such a...There is evidence that a substantial part of genetic predisposition to prostate cancer (PCa) may be due to lower penetrance genes which are found by genome-wide association studies. We have recently conducted such a study and seven new regions of the genome linked to PCa risk have been identified. Three of these loci contain candidate susceptibility genes: MSMB, LMTK2 and KLK2/3. The MSMB and KLK2/3 genes may be useful for PCa screening, and the LMTK2 gene might provide a potential therapeutic target. Together with results from other groups, there are now 23 germline genetic variants which have been reported. These results have the potential to be developed into a genetic test. However, we consider that marketing of tests to the public is premature, as PCa risk can not be evaluated fully at this stage and the appropriate screening protocols need to be developed. Follow-up validation studies, as well as studies to explore the psychological implications of genetic profile testing, will be vital prior to roll out into healthcare.展开更多
基金financial assistance and support provided over many years by various organisations including CODELCO Chile, CRC Mining, Mining3, MMG, DSI and Geobrugg
文摘Excavation damage under high in situ stress depends largely upon the potential block size associated with any violent ejection.The size and shape of the dynamic instability are largely controlled by the location,orientation and extent of the pre-existing geological discontinuities.A new methodology is presented in which the rock mass demand can be expressed in terms of the mass in tonnes of unstable rock that is ejected per unit area of the excavation surface where failure occurs.A probabilistic approach has been implemented to estimate the potential rock mass instabilities and their associated static and dynamic demands.The new methodology considers that the strain energy released by the rock mass during violent stress-driven failure is largely converted into kinetic energy of ejection for blocks.The estimated dynamic demand has been favourably compared with observations of rock mass damage in a number of underground excavations.
文摘There is evidence that a substantial part of genetic predisposition to prostate cancer (PCa) may be due to lower penetrance genes which are found by genome-wide association studies. We have recently conducted such a study and seven new regions of the genome linked to PCa risk have been identified. Three of these loci contain candidate susceptibility genes: MSMB, LMTK2 and KLK2/3. The MSMB and KLK2/3 genes may be useful for PCa screening, and the LMTK2 gene might provide a potential therapeutic target. Together with results from other groups, there are now 23 germline genetic variants which have been reported. These results have the potential to be developed into a genetic test. However, we consider that marketing of tests to the public is premature, as PCa risk can not be evaluated fully at this stage and the appropriate screening protocols need to be developed. Follow-up validation studies, as well as studies to explore the psychological implications of genetic profile testing, will be vital prior to roll out into healthcare.