期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Unravelling the prospects of electrolytes containing ionic liquids and deep eutectic solvents for next generation lithium batteries 被引量:1
1
作者 Shivani Ramesh Chand Thakur +2 位作者 Akhil Thakur akshay sharma Renuka sharma 《Journal of Energy Chemistry》 2025年第6期482-500,I0012,共20页
The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolyt... The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored. 展开更多
关键词 Electrolytes Deepeutectic solvents lonic liquids Lithium salts Electrochemical performance Lithium batteries
在线阅读 下载PDF
An overview of deep eutectic solvents:Alternative for organic electrolytes,aqueous systems&ionic liquids for electrochemical energy storage 被引量:4
2
作者 akshay sharma Renuka sharma +1 位作者 Ramesh C.Thakur Lakhveer Singh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期592-626,I0013,共36页
As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovativ... As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovative solutions must be explored.This review examines the deep eutectic solvents(DESs)as a green,safe,and affordable solution for the electrochemical energy storage and conversion field,offering tremendous opportunities and a promising future.DESs are a class of environment-friendly solvents known for their low toxicity and unique properties,such as their good conductivity,high thermal stability,and nonflammability.This review explores the fundamentals,preparations,and various interactions that often predominate in the formation of DESs,the properties of DESs,and how DESs are better than traditional solvents involving cost-ineffective and unsafe organic electrolytes and ionic liquids as well as inefficient aqueous systems due to low energy density for electrochemical energy storage applications.Then,a particular focus is placed on the various electrochemical applications of DESs,including their role in the electrolytes in batteries/supercapacitors,electropolishing and electrodeposition of metals,synthesis of electrode materials,recycling of electrodes,and their potential for use in CO_(2)capture.The review concludes by exploring the challenges,research gaps,and future potential of DESs in electrochemical applications,providing a comprehensive overview,and highlighting key considerations for their design and use. 展开更多
关键词 Deep eutectic solvent Green solventHole theory Energy storage devices Aqueous electrolyte
在线阅读 下载PDF
Therapeutic gene editing strategies using CRISPR-Cas9 for theβ-hemoglobinopathies
3
作者 James B.Papizan Shaina N.Porter +1 位作者 akshay sharma Shondra M.Pruett-Miller 《The Journal of Biomedical Research》 CAS CSCD 2021年第2期115-134,共20页
With advancements in gene editing technologies,our ability to make precise and efficient modifications to the genome is increasing at a remarkable rate,paving the way for scientists and clinicians to uniquely treat a ... With advancements in gene editing technologies,our ability to make precise and efficient modifications to the genome is increasing at a remarkable rate,paving the way for scientists and clinicians to uniquely treat a multitude of previously irremediable diseases.CRISPR-Cas9,short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9,is a gene editing platform with the ability to alter the nucleotide sequence of the genome in living cells.This technology is increasing the number and pace at which new gene editing treatments for genetic disorders are moving toward the clinic.Theβ-hemoglobinopathies are a group of monogenic diseases,which despite their high prevalence and chronic debilitating nature,continue to have few therapeutic options available.In this review,we will discuss our existing comprehension of the genetics and current state of treatment forβ-hemoglobinopathies,consider potential genome editing therapeutic strategies,and provide an overview of the current state of clinical trials using CRISPR-Cas9 gene editing. 展开更多
关键词 sickle cell disease sickle cell anemia fetal hemoglobin HEMOGLOBINOPATHY CRISPR gene editing genome engineering
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部