期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
从数据处理到区块链网络--信息系统领域研究的回顾与展望
1
作者 范绍坤 诺扬·伊尔克 +2 位作者 希拉克·库默 徐睿沄 赵建良 《经济管理学刊》 2022年第1期169-194,共26页
自1953年国际商业机器有限公司(IBM)售出第一台大型计算机以来,七十年岁月变迁已使得人类社会成为一个高度依赖网络化计算系统的信息社会。随着算力的提升,信息系统(IS)在商学与管理学中的地位越来越重要,它在为其他管理学子学科做出贡... 自1953年国际商业机器有限公司(IBM)售出第一台大型计算机以来,七十年岁月变迁已使得人类社会成为一个高度依赖网络化计算系统的信息社会。随着算力的提升,信息系统(IS)在商学与管理学中的地位越来越重要,它在为其他管理学子学科做出贡献的同时,也深入发掘着自身的商业价值。与此同时,信息技术(IT)维系企业生存发展之基、构筑竞争优势之源,也成为一家企业基业长青的必要条件之一。在本文中,通过对顶刊文献进行主题分析,我们详细讨论了信息系统领域研究自20世纪80年代萌发以来的演变。结果表明,信息系统相关研究历经数次变革,在此期间,研究者们的背景学科在发生改变,支持研究的基础技术也在不断精进。从基础的数据处理到系统开发、客户-服务器网络、电子商务、三代互联网(1.0、2.0、3.0),再到区块链,每一次技术演进都催生出与之相应的独特研究问题,吸引着信息系统领域研究者的目光,并促使其更新自身的研究理论与方法。以史为镜,以古鉴今。我们相信,本文研究的内容能为信息系统及其相关领域的研究新人提供一定程度的指引和启迪。 展开更多
关键词 研究方向的演化 信息系统 区块链 元宇宙 非同质化通证 加密货币 主题模型 第三代互联网
在线阅读 下载PDF
EYE-YOLO: a multi-spatial pyramid pooling and Focal-EIOU loss inspired tiny YOLOv7 for fundus eye disease detection
2
作者 akhil kumar R.Dhanalakshmi 《International Journal of Intelligent Computing and Cybernetics》 2024年第3期503-522,共20页
Purpose:The purpose of this work is to present an approach for autonomous detection of eye disease in fundus images.Furthermore,this work presents an improved variant of the Tiny YOLOv7 model developed specifically fo... Purpose:The purpose of this work is to present an approach for autonomous detection of eye disease in fundus images.Furthermore,this work presents an improved variant of the Tiny YOLOv7 model developed specifically for eye disease detection.The model proposed in this work is a highly useful tool for the development of applications for autonomous detection of eye diseases in fundus images that can help and assist ophthalmologists.Design/methodology/approach:The approach adopted to carry out this work is twofold.Firstly,a richly annotated dataset consisting of eye disease classes,namely,cataract,glaucoma,retinal disease and normal eye,was created.Secondly,an improved variant of the Tiny YOLOv7 model was developed and proposed as EYE-YOLO.The proposed EYE-YOLO model has been developed by integrating multi-spatial pyramid pooling in the feature extraction network and Focal-EIOU loss in the detection network of the Tiny YOLOv7 model.Moreover,at run time,the mosaic augmentation strategy has been utilized with the proposed model to achieve benchmark results.Further,evaluations have been carried out for performance metrics,namely,precision,recall,F1 Score,average precision(AP)and mean average precision(mAP).Findings:The proposed EYE-YOLO achieved 28%higher precision,18%higher recall,24%higher F1 Score and 30.81%higher mAP than the Tiny YOLOv7 model.Moreover,in terms of AP for each class of the employed dataset,it achieved 9.74%higher AP for cataract,27.73%higher AP for glaucoma,72.50%higher AP for retina disease and 13.26%higher AP for normal eye.In comparison to the state-of-the-art Tiny YOLOv5,Tiny YOLOv6 and Tiny YOLOv8 models,the proposed EYE-YOLO achieved 6:23.32%higher mAP.Originality/value:This work addresses the problem of eye disease recognition as a bounding box regression and detection problem.Whereas,the work in the related research is largely based on eye disease classification.The other highlight of this work is to propose a richly annotated dataset for different eye diseases useful for training deep learning-based object detectors.The major highlight of this work lies in the proposal of an improved variant of the Tiny YOLOv7 model focusing on eye disease detection.The proposed modifications in the Tiny YOLOv7 aided the proposed model in achieving better results as compared to the state-of-the-art Tiny YOLOv8 and YOLOv8 Nano. 展开更多
关键词 Tiny YOLOv7 Spatial pyramid pooling Focal-EIOU loss Eye disease detection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部