Accurate detection of unique herbs is crucial for herbal medicine preparation. Zingiberaceae species, which are important in Ayurvedic medicine of India, are often misidentified in Northeast (NE) Indian herbal markets...Accurate detection of unique herbs is crucial for herbal medicine preparation. Zingiberaceae species, which are important in Ayurvedic medicine of India, are often misidentified in Northeast (NE) Indian herbal markets. Kaempferia galanga (Zingiberaceae) is one of the major components of popular Ayurvedic drugs used for rheumatic diseases (i.e.,“Gandha Thailam” and “Rasnairandadi Kashayam”), contusions, fractures, and sprains. In NE India, herbal healers often misidentify plants from the Marantaceae family (e.g., Calathea bachemiana and Maranta leuconeura) as Kaempferia, which leads to adulteration of the medicinal herb. This misidentification of herbs occurs in NE India because Zingiberaceae plant barcoding information is inadequate. As a consequence, herbal medicine is not only therapeutically less effective but may also cause adverse reactions that range from mild to life-threatening. In this study, we used eight barcoding loci to develop “fingerprints” for four Kaempferia species and two species frequently mistaken for Kaempferia. The PCR and sequencing success of the loci matK, rbcL and trnH-psbA were found to be 100%;the combination of matK, rbcL, and trnH-psbA proved to be the ideal locus for discriminating the Kaempferia species from their adulterants because the combined loci showed greater variability than individual loci. This reliable tool was therefore developed in the current study for accurate identification of Kaempferia plants which can effectively resolve identification issues for herbal healers.展开更多
Asian cultivated rice shows allelic variation in sodium transporter,OsHKT1;5,correlating with shoot sodium exclusion(salinity tolerance).These changes map to intra/extracellularly-oriented loops that occur between fou...Asian cultivated rice shows allelic variation in sodium transporter,OsHKT1;5,correlating with shoot sodium exclusion(salinity tolerance).These changes map to intra/extracellularly-oriented loops that occur between four transmembrane-P loop-transmembrane(MPM)motifs in OsHKT1;5.HKT1;5 sequences from more recently evolved Oryza species(O.sativa/O.officinalis complex species)contain two expansions that involve two intracellularly oriented loops/helical regions between MPM domains,potentially governing transport characteristics,while more ancestral HKT1;5 sequences have shorter intracellular loops.We compared homology models for homoeologous OcHKT 1;5-K and OcHKT1;5-L from halophytic O.coarctata to identify complementary amino acid residues in OcHKT1;5-L that potentially enhance affinity for Na+.Using haplotyping,we showed that Asian cultivated rice accessions only have a fraction of HKT1;5 diversity available in progenitor wild rice species(O.nivara and O.rufipogon).Progenitor HKT1;5 haplotypes can thus be used as novel potential donors for enhancing cultivated rice salinity tolerance.Within Asian rice accessions,10 non-synonymous HKT1;5 haplotypic groups occur.More HKT1;5 haplotypic diversities occur in cultivated indica gene pool compared to japonica.Predominant Haplotypes 2 and 10 occur in mutually exclusive japonica and indica groups,corresponding to haplotypes in O.sativa salt-sensitive and salt-tolerant landraces,respectively.This distinct haplotype partitioning may have originated in separate ancestral gene pools of indica and japonica,or from different haplotypes selected during domestication.Predominance of specific HKT1;5 haplotypes within the 3000 rice dataset may relate to eco-physiological fitness in specific geo-climatic and/or edaphic contexts.展开更多
基金funding the project by way of DBT Twinning Programme for NE (BT/33/NE/TBP/2010)MS Swaminathan Research Foundation for AFLP facility and Department of Biosciences and Bioengineering, IIT Guwahati, for providing all necessary infrastructural support
文摘Accurate detection of unique herbs is crucial for herbal medicine preparation. Zingiberaceae species, which are important in Ayurvedic medicine of India, are often misidentified in Northeast (NE) Indian herbal markets. Kaempferia galanga (Zingiberaceae) is one of the major components of popular Ayurvedic drugs used for rheumatic diseases (i.e.,“Gandha Thailam” and “Rasnairandadi Kashayam”), contusions, fractures, and sprains. In NE India, herbal healers often misidentify plants from the Marantaceae family (e.g., Calathea bachemiana and Maranta leuconeura) as Kaempferia, which leads to adulteration of the medicinal herb. This misidentification of herbs occurs in NE India because Zingiberaceae plant barcoding information is inadequate. As a consequence, herbal medicine is not only therapeutically less effective but may also cause adverse reactions that range from mild to life-threatening. In this study, we used eight barcoding loci to develop “fingerprints” for four Kaempferia species and two species frequently mistaken for Kaempferia. The PCR and sequencing success of the loci matK, rbcL and trnH-psbA were found to be 100%;the combination of matK, rbcL, and trnH-psbA proved to be the ideal locus for discriminating the Kaempferia species from their adulterants because the combined loci showed greater variability than individual loci. This reliable tool was therefore developed in the current study for accurate identification of Kaempferia plants which can effectively resolve identification issues for herbal healers.
基金supported by the Department of Biotechnology,Government of India(Grant No.BT/PR11396/NDB/52/118/2008)and Council for Scientific and Industrial Research,India for Senior Research Fellowship(Grant No.09/656(0018)/2016-EMR-1)to Shalini PULIPATIfunding and support provided by JC Bose Fellowship(Grant No.SB/S2/JC-071/2015)from Science and Engineering Research Board,India and Bioinformatics Centre Grant funded by Department of Biotechnology,India(Grant No.BT/PR40187/BTIS/137/9/2021)。
文摘Asian cultivated rice shows allelic variation in sodium transporter,OsHKT1;5,correlating with shoot sodium exclusion(salinity tolerance).These changes map to intra/extracellularly-oriented loops that occur between four transmembrane-P loop-transmembrane(MPM)motifs in OsHKT1;5.HKT1;5 sequences from more recently evolved Oryza species(O.sativa/O.officinalis complex species)contain two expansions that involve two intracellularly oriented loops/helical regions between MPM domains,potentially governing transport characteristics,while more ancestral HKT1;5 sequences have shorter intracellular loops.We compared homology models for homoeologous OcHKT 1;5-K and OcHKT1;5-L from halophytic O.coarctata to identify complementary amino acid residues in OcHKT1;5-L that potentially enhance affinity for Na+.Using haplotyping,we showed that Asian cultivated rice accessions only have a fraction of HKT1;5 diversity available in progenitor wild rice species(O.nivara and O.rufipogon).Progenitor HKT1;5 haplotypes can thus be used as novel potential donors for enhancing cultivated rice salinity tolerance.Within Asian rice accessions,10 non-synonymous HKT1;5 haplotypic groups occur.More HKT1;5 haplotypic diversities occur in cultivated indica gene pool compared to japonica.Predominant Haplotypes 2 and 10 occur in mutually exclusive japonica and indica groups,corresponding to haplotypes in O.sativa salt-sensitive and salt-tolerant landraces,respectively.This distinct haplotype partitioning may have originated in separate ancestral gene pools of indica and japonica,or from different haplotypes selected during domestication.Predominance of specific HKT1;5 haplotypes within the 3000 rice dataset may relate to eco-physiological fitness in specific geo-climatic and/or edaphic contexts.