We propose an effective surface plasmon resonance system designed to achieve both negative and positive Goos–H??nchen shifts in reflected light.This system comprises a metal film and an underlying medium,where the re...We propose an effective surface plasmon resonance system designed to achieve both negative and positive Goos–H??nchen shifts in reflected light.This system comprises a metal film and an underlying medium,where the real part of the permittivity of the underlying medium must be less than unity.Surface plasmon polaritons can be excited at the lower surface of the metal when light is incident from the air onto the upper surface of the metal.The excitation of surface plasmon polaritons leads to the exploration of the Goos–H??nchen shift(G–HS).Control over the negative and positive(G–HS)is investigated via the wavelength of the incident light.The magnitude of the G–HS is strongly dependent on the incident wavelength.A remarkable enhancement of both negative and positive G–HS in the reflected light is achieved at certain wavelengths and incident angles.Our system paves the way for exploring different characteristics of optical switching and micro-sensors with very high precision.展开更多
基金Hubei University of Automotive Technology through the start-up research grant(BK202212),located in Shiyan 442002,China。
文摘We propose an effective surface plasmon resonance system designed to achieve both negative and positive Goos–H??nchen shifts in reflected light.This system comprises a metal film and an underlying medium,where the real part of the permittivity of the underlying medium must be less than unity.Surface plasmon polaritons can be excited at the lower surface of the metal when light is incident from the air onto the upper surface of the metal.The excitation of surface plasmon polaritons leads to the exploration of the Goos–H??nchen shift(G–HS).Control over the negative and positive(G–HS)is investigated via the wavelength of the incident light.The magnitude of the G–HS is strongly dependent on the incident wavelength.A remarkable enhancement of both negative and positive G–HS in the reflected light is achieved at certain wavelengths and incident angles.Our system paves the way for exploring different characteristics of optical switching and micro-sensors with very high precision.