期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimizing Row Spacing to Ameliorate the Productivity of Spring Sugarcane (Saccharum officinarum L.) 被引量:3
1
作者 Sami Ullah Shakeel Ahmad Anjum +9 位作者 Muhammad Mohsin Raza Aamir Riaz adeel abbas Malik Muhammad Yousif Jinchuan Ma Yingxia Liu Jiajia Zhang Dingwen Cheng Yaxin Xu Iftikhar Ali 《Agricultural Sciences》 2016年第8期531-538,共9页
One of the main reasons behind reduced cane yield is pathetic method of planting. Planting method and row spacing are the most important yield contributing factors in sugarcane. A field experiment was carried out in o... One of the main reasons behind reduced cane yield is pathetic method of planting. Planting method and row spacing are the most important yield contributing factors in sugarcane. A field experiment was carried out in order to determine quality and yield of sugarcane in various spatial arrangements. Treatments are 180 cm spaced trenches with triple row strips;180 cm spaced trenches with alternate row strips;120 cm spaced trenches with double row strips and 60 cm spaced furrow with single row. Perusal of data revealed that 3.6%, 13.4%, 15%, 15.3% more cane diameter (cm), cane length (cm), stripped cane yield (t·haˉ1</sup>), sugar yield (t·haˉ1</sup>) were obtained from 180 cm spaced trenches with triple row strips as compared to conventional planting method i.e. 60 cm spaced furrows. While the number of millable canes mˉ2</sup>, polarity %, cane juice purity %, cane juice %, commercial cane sugar % and cane sugar recovery % remained non-significant by different planting techniques. 展开更多
关键词 Furrow Planting Quality Row Spacing SUGARCANE Trench Planting YIELD
在线阅读 下载PDF
Realizing high thermoelectric performance via selective resonant doping in oxyselenide BiCuSeO 被引量:2
2
作者 Yue-Xing Chen Wenning Qin +8 位作者 Adil Mansoor adeel abbas Fu Li Guang-xing Liang Ping Fan Muhammad Usman Muzaffar Bushra Jabar Zhen-hua Ge Zhuang-hao Zheng 《Nano Research》 SCIE EI CSCD 2023年第1期1679-1687,共9页
Tuning the charge carrier concentration is imperative to optimize the thermoelectric(TE)performance of a material.For BiCuSeO based oxyselenides,doping efforts have been limited to optimizing the carrier concentration... Tuning the charge carrier concentration is imperative to optimize the thermoelectric(TE)performance of a material.For BiCuSeO based oxyselenides,doping efforts have been limited to optimizing the carrier concentration.In the present work,dual-doping of In and Pb at Bi site is introduced for p-type BiCuSeO to realize the electric transport channels with intricate band characteristics to improve the power factor(PF).Herein,the impurity resonant state is realized via doping of resonant dopant In over Pb,where Pb comes forward to optimize the Fermi energy in the dual-doped BiCuSeO system to divulge the significance of complex electronic structure.The manifold roles of dual-doping are used to adjust the elevation of the PF due to the significant enhancement in electrical properties.Thus,the combined experimental and theoretical study shows that the In/Pb dual doping at Bi sites gently reduces bandgap,introduces resonant doping states with shifting down the Fermi level into valence band(VB)with a larger density of state,and thus causes to increase the carrier concentration and effective mass(m*),which are favorable to enhance the electronic transport significantly.As a result,both improved ZTmax=0.87(at 873 K)and high ZTave=0.5(at 300–873 K)are realized for InyBi(1−x)−yPbxCuSeO(where x=0.06 and y=0.04)system.The obtained results successfully demonstrate the effectiveness of the selective dual doping with resonant dopant inducing band manipulation and carrier engineering that can unlock new prospects to develop high TE materials. 展开更多
关键词 thermoelectric material BiCuSeO dual-doping power factor figure of merit
原文传递
Realizing high thermoelectric performance in n-type Bi_(2)Te_(3)based thin films via post-selenization diffusion 被引量:1
3
作者 Yue-Xing Chen Jun-Ze Zhang +5 位作者 Mohammad Nisar adeel abbas Fu Li Guang-Xing Liang Ping Fan Zhuang-Hao Zheng 《Journal of Materiomics》 SCIE CSCD 2023年第4期618-625,共8页
Thermoelectric thin film has attracted a lot of attention due to its potential in fabricating micropower generator in chip sensors for internet of things(IoT).However,the undeveloped performance of n-type thermoelectr... Thermoelectric thin film has attracted a lot of attention due to its potential in fabricating micropower generator in chip sensors for internet of things(IoT).However,the undeveloped performance of n-type thermoelectric thin film limits its widely application.In this work,a facile post-selenization diffusion reaction method is employed to introduce Se into Bi_(2)Te_(3)thin films,in order to optimize the carrier transport properties.Experimental and theoretical calculation results indicate that the carrier concentration decreases and density of states increases after Se doping,leading to the enhancement of Seebeck coefficient.Further,adjusting the diffusion reaction temperature can maintain the carrier concentration while increasing the mobility simultaneously,resulting in a high power factor of 1.5 mW/(m·K^(2)),which is eight times higher than that of the pristine Bi_(2)Te_(3)thin films.Subsequently,a thin film device fabricated by the present Se-doped Bi_(2)Te_(3)thin films shows the highest output power of 60.20 nW under the temperature difference of 37 K,indicating its potential for practical use. 展开更多
关键词 THERMOELECTRIC Thin film Magnetron sputtering Bie-Tee-Se
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部