期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Regular and Irregular Sampling Linear Transforms in Series of Shift-Invariant Spaces
1
作者 adam zakria Ahmed Yahia +1 位作者 Ibrahim Elkhalil Hosam Alfadel 《Journal of Mathematics and System Science》 2020年第1期22-27,共6页
In this article we show that there exists an analogue of the Fourier duality technique in the setting a series of shift-invariant spaces.Really,every a series shift-invariant spaceΣ^𝑛𝑖=1𝑉x... In this article we show that there exists an analogue of the Fourier duality technique in the setting a series of shift-invariant spaces.Really,every a series shift-invariant spaceΣ^𝑛𝑖=1𝑉𝜙𝑖𝑖with a stable generator^𝑛𝑖=1𝜙𝑖is the range space of a bounded one-to-one linear operator𝑇𝑇between𝐿𝐿2(0,1)and𝐿𝐿2(R).We show regular and irregular sampling formulas inΣ𝑛𝑛𝑖𝑖=1𝑉𝑉𝜙𝜙𝑖𝑖are obtained by transforming. 展开更多
关键词 Shift-invariant spaces sampling expansions zak transform
在线阅读 下载PDF
Asymmetric Multi-channel Sampling in a Series of Shift Invariant Spaces
2
作者 adam zakria 《Journal of Mathematics and System Science》 2016年第9期352-365,共14页
We show asymmetric multi-channel sampling on a series of a shift invariant spaces ∑a^m=1v(φ(ta)) with a series of Riesz generators ∑a^m=1φ(ta) in L2(R), where each channeled signal is assigned a uniform bu... We show asymmetric multi-channel sampling on a series of a shift invariant spaces ∑a^m=1v(φ(ta)) with a series of Riesz generators ∑a^m=1φ(ta) in L2(R), where each channeled signal is assigned a uniform but distinct sampling rate. We use Fourier duality between ∑a^m=1v(φ(ta))and L2[0, 2π] to find conditions under which there is a stable asymmetric multi-channel sampling formula on ∑a^m=1v(φ(ta)). 展开更多
关键词 Shift invariant space Multi-channel sampling Frame Riesz basis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部