In this paper,a novel 2-DOF rotational pointing mechanism(RPM)is designed inspired by the guidelines of the graphical approach.The mechanism integrates with a fast steering mirror(FSM)for compensating pointing errors ...In this paper,a novel 2-DOF rotational pointing mechanism(RPM)is designed inspired by the guidelines of the graphical approach.The mechanism integrates with a fast steering mirror(FSM)for compensating pointing errors of a laser beam.The design intends to achieve an angular travel of±10 mrad and steers a 25 mm mirror aperture.A planar flexure with beam flexures accompanied in parallel with an axial flexure build-up mechanism configuration.Compliant mechanismbased RPM ensures high precision and compactness.Compliance characteristics are established based on the stiffness matrix method for four different planar flexure layouts.One layout with best in-plane rotational compliance is then assessed for performance sensitivity to mechanism dimension parameters and parasitic error,thus informing the design space.Rotational stiffness in both the inplane rotational axes and stress is determined based on finite element analysis(FEA).The wire electrical discharge machining(EDM)is employed for developing the proof of concept for the RPM and is then assembled in FSM.Experiments are conducted to determine the rotational stiffness and angular travel about both in-plane rotational axes.Comparison among theoretical,numerical and experiments reveal excellent linearity of rotational stiffness along the rotational travel range.The maximum theoretical error is less than 5.5%compared with FEA while,the experimental error has a mean of 5%and 3%for both rotational axes thus satisfying the intended design requirement.展开更多
A comprehensive analysis on the chemical composition and source apportionment of hailstone samples were conducted in Dhaka, Bangladesh. pH, electrical conductivity (EC), total dissolved solids (TDS), water soluble ion...A comprehensive analysis on the chemical composition and source apportionment of hailstone samples were conducted in Dhaka, Bangladesh. pH, electrical conductivity (EC), total dissolved solids (TDS), water soluble ions (Na+, K+, Ca2+, Mg2+, Cl-, SO42-, NO3-, HCO3-) and trace metals (Zn, Fe, Cu, Mn) of hailstone were determined. The result revealed that the average pH, EC, TDS were 6.95 ± 0.54, 356.3 ± 150.6 μS·cm-1 and 17.5 ± 2.89 mg·L-1, respectively. The water soluble ions followed the order: Ca2+ > Cl-1 > SO42- > HCO3- > Na+ > Mg2+ > K+ > NO3-. The concentrations of trace metals ranged in order with Zn > Fe > Cu, while the concentration of Mn was below detection limit. Sodium adsorption ratio (SAR) was 0.20 ± 0.09 meqL-1 which indicates it is benign to plants and safe for irrigation. The order of neutralization factor (calculated with average concentrations) found in hailstone was NFCa(1.16) > NFMg (0.36) > NFK(0.32) which were originated from earth crust. Notable correlation was found in between soil tracers Ca2+ and Mg2+ (r = 0.87), indicating their common source dust. Enrichment factor analysis revealed that Ca2+, Mg2+ and K+ are mainly from crust, whereas NO3- and SO42- are mainly attributable to anthropogenic origins. Further source contribution analysis revealed that anthropogenic actions accounted for 99.2% of total NO3- and 89.6% of total SO42-, while 99.2% of total Ca2+ and 95% Mg2+ were from crustal source.展开更多
Atmospheric particulate matters were collected on quartz fibre filters for 24 hours with a low volume sampler from January 2014 to March 2014 at the Southeast Asian mega city (Dhaka, Bangladesh). Particulate matters s...Atmospheric particulate matters were collected on quartz fibre filters for 24 hours with a low volume sampler from January 2014 to March 2014 at the Southeast Asian mega city (Dhaka, Bangladesh). Particulate matters samples were analysed for eleven trace metals with inductively coupled plasma mass spectrometer (ICP-MS) at Cà Foscari University of Venice, Italy. Trace metals were extracted from filters with digestion method using a mixture of HNO3 and H2O2. The average concentration of the determined trace metals of As, Cd, Ni, Cu, Pb, Cr, Fe, Mn, Zn, Sband Se were 3.06, 6.28, 3.77, 11.98, 305.6, 9.2, 2057.0, 42.2, 303.3, 5.47 and 2.43 ng·mDž, respectively. Arsenic concentration is much lower in the atmosphere of Dhaka, though Bangladesh has severe arsenic problem in the ground water. Lead and cadmium concentrations showed decreasing trend in Dhaka compared than previous measurements—but still they have very high levels compared than Europe and USA. There is very limited information for Mn, Sb and Se concentrations in Dhaka air. Correlation studies showed that several trace metals had potential joint sources of origin, e.g., manganese is highly correlated with iron (r2 = 0.97) and nickel (r2 = 0.84), copper (r2 = 0.86);lead with arsenic (r2 = 0.79) and antimony (r2 = 0.78). Enrichment factors analysis was also done with the data base for the respective metals in earth crust and coal fly ash. As and Cu both have combined sources, whereas Cd, Pb and Zn were from coal fly ash.Trace metals concentrations in Dhaka city air were much higher than Europe and USA but comparable or slightly lower than other south Asian countries. This is the first extensive study for the eleven trace metals with ICP-MS in Dhaka, Bangladesh.展开更多
Atmospheric fine particulate matters (PM2.5) were collected with an Envirotech Instrument (Model APM 550) at the roof of Khundkur Mukarram Hussain Science Building, University of Dhaka, Bangladesh between January and ...Atmospheric fine particulate matters (PM2.5) were collected with an Envirotech Instrument (Model APM 550) at the roof of Khundkur Mukarram Hussain Science Building, University of Dhaka, Bangladesh between January and February, 2013. PM2.5 samples were collected on Quartz fiber filters during day and night time. Water soluble ions (sulfate, nitrate, phosphate, chloride, bromide, sodium, potassium and calcium) were analyzed with Ion Chromatography (Model 881, Metrohm Ltd., Switzerland) and Flame photometer (Model PFP7, Jenway, UK). Average PM2.5 mass was 136.1 μg·mDž during day time and 246.8 μg·mDž during night time with a total average of 191.4 μg·mDž. Nighttime PM2.5 concentration was about double compared than that of daytime presumable due to the low ambient temperatures with high emissions from heavy duty vehicles. The 24-hour average PM2.5 mass (average of day and night) was about eight times higher than WHO (25.0 μg·mDž) and about three times higher than DoE, Bangladesh (65.0 μg·mDž) limit values. The total average concentrations of sulfate, nitrate, phosphate, bromide, chloride, sodium, potassium and calcium were 5.30, 7.75, 0.62, 0.16, 1.19, 1.30, 8.11, and 3.09 μg·mDž, respectively. The concentrations of the water soluble ions were much higher during nighttime than daytime except nitrate, bromide and potassium. Excellent correlations were observed between sulfate and nitrate, sodium and chloride, bromide and phosphate indicating joint sources of origin. Potassium, sulfate, nitrate and calcium are the most dominant species in PM2.5. Water soluble ionic components in Dhaka contributed about 15% mass of the PM2.5. Ratio analysis showed that sodium and chloride were from mainly sea salt. Potassium has varieties of sources other than biomass burning. Sulfate and nitrate are mainly from fossil fuel origin. This is the first study of the day and night variation of the water soluble ionic species at the fine particulate matters (PM2.5) in Bangladesh.展开更多
基金co-supported by the National Natural Science Foundation of China(No.91748205 and 51675032)the Fundamental Research Funds for the Central Universities(No.YWF-18-BJ-Y-34 and YWF-18-BJ-J-23)of China。
文摘In this paper,a novel 2-DOF rotational pointing mechanism(RPM)is designed inspired by the guidelines of the graphical approach.The mechanism integrates with a fast steering mirror(FSM)for compensating pointing errors of a laser beam.The design intends to achieve an angular travel of±10 mrad and steers a 25 mm mirror aperture.A planar flexure with beam flexures accompanied in parallel with an axial flexure build-up mechanism configuration.Compliant mechanismbased RPM ensures high precision and compactness.Compliance characteristics are established based on the stiffness matrix method for four different planar flexure layouts.One layout with best in-plane rotational compliance is then assessed for performance sensitivity to mechanism dimension parameters and parasitic error,thus informing the design space.Rotational stiffness in both the inplane rotational axes and stress is determined based on finite element analysis(FEA).The wire electrical discharge machining(EDM)is employed for developing the proof of concept for the RPM and is then assembled in FSM.Experiments are conducted to determine the rotational stiffness and angular travel about both in-plane rotational axes.Comparison among theoretical,numerical and experiments reveal excellent linearity of rotational stiffness along the rotational travel range.The maximum theoretical error is less than 5.5%compared with FEA while,the experimental error has a mean of 5%and 3%for both rotational axes thus satisfying the intended design requirement.
文摘A comprehensive analysis on the chemical composition and source apportionment of hailstone samples were conducted in Dhaka, Bangladesh. pH, electrical conductivity (EC), total dissolved solids (TDS), water soluble ions (Na+, K+, Ca2+, Mg2+, Cl-, SO42-, NO3-, HCO3-) and trace metals (Zn, Fe, Cu, Mn) of hailstone were determined. The result revealed that the average pH, EC, TDS were 6.95 ± 0.54, 356.3 ± 150.6 μS·cm-1 and 17.5 ± 2.89 mg·L-1, respectively. The water soluble ions followed the order: Ca2+ > Cl-1 > SO42- > HCO3- > Na+ > Mg2+ > K+ > NO3-. The concentrations of trace metals ranged in order with Zn > Fe > Cu, while the concentration of Mn was below detection limit. Sodium adsorption ratio (SAR) was 0.20 ± 0.09 meqL-1 which indicates it is benign to plants and safe for irrigation. The order of neutralization factor (calculated with average concentrations) found in hailstone was NFCa(1.16) > NFMg (0.36) > NFK(0.32) which were originated from earth crust. Notable correlation was found in between soil tracers Ca2+ and Mg2+ (r = 0.87), indicating their common source dust. Enrichment factor analysis revealed that Ca2+, Mg2+ and K+ are mainly from crust, whereas NO3- and SO42- are mainly attributable to anthropogenic origins. Further source contribution analysis revealed that anthropogenic actions accounted for 99.2% of total NO3- and 89.6% of total SO42-, while 99.2% of total Ca2+ and 95% Mg2+ were from crustal source.
文摘Atmospheric particulate matters were collected on quartz fibre filters for 24 hours with a low volume sampler from January 2014 to March 2014 at the Southeast Asian mega city (Dhaka, Bangladesh). Particulate matters samples were analysed for eleven trace metals with inductively coupled plasma mass spectrometer (ICP-MS) at Cà Foscari University of Venice, Italy. Trace metals were extracted from filters with digestion method using a mixture of HNO3 and H2O2. The average concentration of the determined trace metals of As, Cd, Ni, Cu, Pb, Cr, Fe, Mn, Zn, Sband Se were 3.06, 6.28, 3.77, 11.98, 305.6, 9.2, 2057.0, 42.2, 303.3, 5.47 and 2.43 ng·mDž, respectively. Arsenic concentration is much lower in the atmosphere of Dhaka, though Bangladesh has severe arsenic problem in the ground water. Lead and cadmium concentrations showed decreasing trend in Dhaka compared than previous measurements—but still they have very high levels compared than Europe and USA. There is very limited information for Mn, Sb and Se concentrations in Dhaka air. Correlation studies showed that several trace metals had potential joint sources of origin, e.g., manganese is highly correlated with iron (r2 = 0.97) and nickel (r2 = 0.84), copper (r2 = 0.86);lead with arsenic (r2 = 0.79) and antimony (r2 = 0.78). Enrichment factors analysis was also done with the data base for the respective metals in earth crust and coal fly ash. As and Cu both have combined sources, whereas Cd, Pb and Zn were from coal fly ash.Trace metals concentrations in Dhaka city air were much higher than Europe and USA but comparable or slightly lower than other south Asian countries. This is the first extensive study for the eleven trace metals with ICP-MS in Dhaka, Bangladesh.
文摘Atmospheric fine particulate matters (PM2.5) were collected with an Envirotech Instrument (Model APM 550) at the roof of Khundkur Mukarram Hussain Science Building, University of Dhaka, Bangladesh between January and February, 2013. PM2.5 samples were collected on Quartz fiber filters during day and night time. Water soluble ions (sulfate, nitrate, phosphate, chloride, bromide, sodium, potassium and calcium) were analyzed with Ion Chromatography (Model 881, Metrohm Ltd., Switzerland) and Flame photometer (Model PFP7, Jenway, UK). Average PM2.5 mass was 136.1 μg·mDž during day time and 246.8 μg·mDž during night time with a total average of 191.4 μg·mDž. Nighttime PM2.5 concentration was about double compared than that of daytime presumable due to the low ambient temperatures with high emissions from heavy duty vehicles. The 24-hour average PM2.5 mass (average of day and night) was about eight times higher than WHO (25.0 μg·mDž) and about three times higher than DoE, Bangladesh (65.0 μg·mDž) limit values. The total average concentrations of sulfate, nitrate, phosphate, bromide, chloride, sodium, potassium and calcium were 5.30, 7.75, 0.62, 0.16, 1.19, 1.30, 8.11, and 3.09 μg·mDž, respectively. The concentrations of the water soluble ions were much higher during nighttime than daytime except nitrate, bromide and potassium. Excellent correlations were observed between sulfate and nitrate, sodium and chloride, bromide and phosphate indicating joint sources of origin. Potassium, sulfate, nitrate and calcium are the most dominant species in PM2.5. Water soluble ionic components in Dhaka contributed about 15% mass of the PM2.5. Ratio analysis showed that sodium and chloride were from mainly sea salt. Potassium has varieties of sources other than biomass burning. Sulfate and nitrate are mainly from fossil fuel origin. This is the first study of the day and night variation of the water soluble ionic species at the fine particulate matters (PM2.5) in Bangladesh.