We present optical designs with freeform optics in the context of hyperspectral imaging.Results show designs that are 5×more compact in volume than similar designs using conventional spherical or aspherical surfa...We present optical designs with freeform optics in the context of hyperspectral imaging.Results show designs that are 5×more compact in volume than similar designs using conventional spherical or aspherical surfaces.We will show how combining the concepts of spatial and spectral-band broadening,which will be introduced in this paper,led to the improvement in compactness that is uniquely enabled by freeform optics.展开更多
Pancreatic adenocarcinoma(PDAC)is one of the most deadly cancers,characterized by extremely limited therapeutic options and a poor prognosis,as it is often diagnosed during late disease stages.Innovative and selective...Pancreatic adenocarcinoma(PDAC)is one of the most deadly cancers,characterized by extremely limited therapeutic options and a poor prognosis,as it is often diagnosed during late disease stages.Innovative and selective treatments are urgently needed,since current therapies have limited efficacy and significant side effects.Through proteomics analysis of extracellular vesicles,we discovered an imbalanced distribution of amino acids secreted by PDAC tumor cells.Our findings revealed that PDAC cells preferentially excrete proteins with certain preferential amino acids,including isoleucine and histidine,via extracellular vesicles.These amino acids are associated with disease progression and can be targeted to elicit selective toxicity to PDAC tumor cells.Both in vitro and in vivo experiments demonstrated that supplementation with these specific amino acids effectively eradicated PDAC cells.Mechanistically,we also identified XRN1 as a potential target for these amino acids.The high selectivity of this treatment method allows for specific targeting of tumor metabolism with very low toxicity to normal tissues.Furthermore,we found this treatment approach is easy-to-administer and with sustained tumor-killing effects.Together,our findings reveal that exocytosed amino acids may serve as therapeutic targets for designing treatments of intractable PDAC and potentially offer alternative treatments for other types of cancers.展开更多
基金supported under the NSF I/UCRC Center for Freeform Optics(IIP-1338877 and IIP-1338898)。
文摘We present optical designs with freeform optics in the context of hyperspectral imaging.Results show designs that are 5×more compact in volume than similar designs using conventional spherical or aspherical surfaces.We will show how combining the concepts of spatial and spectral-band broadening,which will be introduced in this paper,led to the improvement in compactness that is uniquely enabled by freeform optics.
基金The authors acknowledge North Dakota State University Center for Computationally Assisted Science and Technology for computing resources.This work was financially supported by grants from the National Cancer Institute(R21CA270748,R03CA252783)and the National Institute of General Medical Sciences(U54GM128729)of National Institutes of Health to D.S.,NDSU EPSCoR STEM Research and Education fund(FAR0032086)to D.S.,ND EPSCoR:Advancing Science Excellence in ND(FAR0030554)to D.S.,and National Science Foundation(NSF)under NSF EPSCoR Track-1 Cooperative Agreement(OIA no.1355466)to D.S.,the National Institue of General Medical Sciences(P20GM109036)to J.F.,NSF under NSF OIA ND-ACES(award no.1946202)to W.X.,and NDSU Foundation and Alumni Association to D.S.
文摘Pancreatic adenocarcinoma(PDAC)is one of the most deadly cancers,characterized by extremely limited therapeutic options and a poor prognosis,as it is often diagnosed during late disease stages.Innovative and selective treatments are urgently needed,since current therapies have limited efficacy and significant side effects.Through proteomics analysis of extracellular vesicles,we discovered an imbalanced distribution of amino acids secreted by PDAC tumor cells.Our findings revealed that PDAC cells preferentially excrete proteins with certain preferential amino acids,including isoleucine and histidine,via extracellular vesicles.These amino acids are associated with disease progression and can be targeted to elicit selective toxicity to PDAC tumor cells.Both in vitro and in vivo experiments demonstrated that supplementation with these specific amino acids effectively eradicated PDAC cells.Mechanistically,we also identified XRN1 as a potential target for these amino acids.The high selectivity of this treatment method allows for specific targeting of tumor metabolism with very low toxicity to normal tissues.Furthermore,we found this treatment approach is easy-to-administer and with sustained tumor-killing effects.Together,our findings reveal that exocytosed amino acids may serve as therapeutic targets for designing treatments of intractable PDAC and potentially offer alternative treatments for other types of cancers.