期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于模糊推理的致密砂岩气储集层重复压裂井选择方法 被引量:10
1
作者 artun emre KULGA Burak 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2020年第2期383-389,共7页
建立了一种基于人工智能的致密砂岩气储集层重复压裂井筛选方法,并进行了算例分析。该方法以模糊逻辑为基础,通过语言模糊性的数学表示来处理语言的不精确性和主观性,是1个基于模糊集理论、模糊规则和模糊推理的计算系统。用5个指数分... 建立了一种基于人工智能的致密砂岩气储集层重复压裂井筛选方法,并进行了算例分析。该方法以模糊逻辑为基础,通过语言模糊性的数学表示来处理语言的不精确性和主观性,是1个基于模糊集理论、模糊规则和模糊推理的计算系统。用5个指数分别表征与重复压裂井选择问题相关的水力裂缝质量、储集层特征、初始条件、操作参数、产量,每个指数又包含3个相关参数。将每个指数/参数的值划分为低、中、高3个类别,针对每个指数/参数的每个类别定义梯形隶属函数,并定义所有相关规则。先将某个指数的相关参数输入到基于规则的模糊推理系统中,输出该指数的值,再另建1个模糊推理系统,将储集层指数、操作指数、初始条件指数和产量指数作为输入参数,重复压裂潜力指数作为输出参数,从而筛选重复压裂井。利用已发表文献中的数据验证了该方法的有效性。 展开更多
关键词 致密砂岩气 重复压裂 水平井 人工智能 模糊推理 模糊规则 水力裂缝质量 重复压裂潜力
在线阅读 下载PDF
Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference 被引量:5
2
作者 artun emre KULGA Burak 《Petroleum Exploration and Development》 2020年第2期413-420,共8页
An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and... An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and subjectivity through mathematical representations of linguistic vagueness, and is a computing system based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. Five indexes are used to characterize hydraulic fracture quality, reservoir characteristics, operational parameters, initial conditions, and production related to the selection of re-fracturing well, and each index includes 3 related parameters. The value of each index/parameter is grouped into three categories that are low, medium, and high. For each category, a trapezoidal membership function all related rules are defined. The related parameters of an index are input into the rule-based fuzzy-inference system to output value of the index. Another fuzzy-inference system is built with the reservoir index, operational index, initial condition index and production index as input parameters and re-fracturing potential index as output parameter to screen out re-fracturing wells. This approach was successfully validated using published data. 展开更多
关键词 tight gas sands re-fracturing horizontal wells artificial intelligence fuzzy logic fuzzy rule hydraulic fracture quality refracturing potential
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部