期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nonlinear optical properties of integrated GeSbS chalcogenide waveguides 被引量:7
1
作者 SAMUEL SERNA HONGTAO LIN +7 位作者 CARLOS ALONSO-RAMOS anupama yadav XAVIER LE ROUX KATHLEEN RICHARDSON ERIC CASSAN NICOLAS DUBREUIL JUEJUN HU LAURENT VIVIEN 《Photonics Research》 SCIE EI 2018年第5期I0062-I0067,共6页
In this paper, we report the experimental characterization of highly nonlinear GeSbS chalcogenide glass waveguides. We used a single-beam characterization protocol that accounts for the magnitude and sign of the real ... In this paper, we report the experimental characterization of highly nonlinear GeSbS chalcogenide glass waveguides. We used a single-beam characterization protocol that accounts for the magnitude and sign of the real and imaginary parts of the third-order nonlinear susceptibility of integrated Ge23Sb7S70 (GeSbS) chalcogenide glass waveguides in the near-infrared wavdength range at λ = 1580 nm. We measured a waveguide nonlinear parameter of 7.0 4- 0.7 W-1 · m-1, which corresponds to a nonlinear refractive index of n2 =(0.93 ± 0.08) ×10-18 m2/W, comparable to that of silicon, but with an 80 times lower two-photon absorption coefficient βTPA = (0.010± 0.003) cm/GW, accompanied with linear propagation losses as low as 0.5 dB/cm. The outstanding linear and nonlinear properties of GeSbS, with a measured nonlinear figure of merit FOM TPA = 6.0 ± 1.4 at λ = 1580 nm, ultimately make it one of the most promising integrated platforms for the realization of nonlinear functionalities. 展开更多
关键词 Nonlinear optical properties integrated GeSbS chalcogenide waveguides
原文传递
Monolithically integrated stretchable photonics 被引量:1
2
作者 Lan Li Hongtao Lin +10 位作者 Shutao Qiao Yi-Zhong Huang Jun-Ying Li Jérôme Michon Tian Gu Carlos Alosno-Ramos Laurent Vivien anupama yadav Kathleen Richardson Nanshu Lu Juejun Hu 《Light(Science & Applications)》 SCIE EI CAS CSCD 2017年第1期210-217,共8页
Mechanically stretchable photonics provides a new geometric degree of freedom for photonic system design and foresees applications ranging from artificial skins to soft wearable electronics.Here we describe the design... Mechanically stretchable photonics provides a new geometric degree of freedom for photonic system design and foresees applications ranging from artificial skins to soft wearable electronics.Here we describe the design and experimental realization of the first single-mode stretchable photonic devices.These devices,made of chalcogenide glass and epoxy polymer materials,are monolithically integrated on elastomer substrates.To impart mechanical stretching capability to devices built using these intrinsically brittle materials,our design strategy involves local substrate stiffening to minimize shape deformation of critical photonic components,and interconnecting optical waveguides assuming a meandering Euler spiral geometry to mitigate radiative optical loss.Devices fabricated following such design can sustain 41%nominal tensile strain and 3000 stretching cycles without measurable degradation in optical performance.In addition,we present a rigorous analytical model to quantitatively predict stressoptical coupling behavior in waveguide devices of arbitrary geometry without using a single fitting parameter. 展开更多
关键词 chalcogenide glass integrated photonics optical resonator strain-optical coupling stretchable photonics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部