We give an existence result of a renormalized solution for a class of nonlin- ear parabolic equations b(x,u)/ t-div (a(x,t,u, u))+g(x,t,u,u )+H(x,t, u)=f,in QT, where the right side belongs to LP' (0,T;...We give an existence result of a renormalized solution for a class of nonlin- ear parabolic equations b(x,u)/ t-div (a(x,t,u, u))+g(x,t,u,u )+H(x,t, u)=f,in QT, where the right side belongs to LP' (0,T;W-1,p'(Ω)) and where b(x,u) is unbounded function of u and where - div ( a ( x, t, u, u) ) is a Leray-Lions type operator with growth |u |p- 1 in V u. The critical growth condition on g is with respect to u and no growth condition with re sp ect to u, while the function H (x, t, u) grows as| u |p - 1.展开更多
文摘We give an existence result of a renormalized solution for a class of nonlin- ear parabolic equations b(x,u)/ t-div (a(x,t,u, u))+g(x,t,u,u )+H(x,t, u)=f,in QT, where the right side belongs to LP' (0,T;W-1,p'(Ω)) and where b(x,u) is unbounded function of u and where - div ( a ( x, t, u, u) ) is a Leray-Lions type operator with growth |u |p- 1 in V u. The critical growth condition on g is with respect to u and no growth condition with re sp ect to u, while the function H (x, t, u) grows as| u |p - 1.