期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimized Neural Network-Based Micro Strip Patch Antenna Design for Radar Application
1
作者 a.yogeshwaran K.Umadevi 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1491-1503,共13页
Microstrip antennas are low-profile antennas that are utilized in wireless communication systems.In recent years,communication engineers have been increasingly interested in it.Because of downsizing,novelty,and cost re... Microstrip antennas are low-profile antennas that are utilized in wireless communication systems.In recent years,communication engineers have been increasingly interested in it.Because of downsizing,novelty,and cost reduction,the number of wireless standards has expanded in recent years.Wideband tech-nologies have evolved in addition to analog and digital services.Radars necessi-tate antenna subsystems that are low-profile and lightweight.Microstrip antennas have these qualities and are suited for radars as an alternative to the bulky and heavyweight reflector/slotted waveguide array antennas.A perforated corner single-line fed microstrip antenna is designed here.When compared to the basic square microstrip antenna,this antenna has better specifications.Because key issue is determining the best values for various antenna parameters when devel-oping the patch antenna.Optimized Neural Network(ONN)is one potential tech-nique utilized to solve this issue,and this work also uses Particle Swarm Optimization(PSO)to enhance the antenna performance.Return loss(S11)and Voltage Standing Wave Ratio(VSWR)parameters are considered in all situations,developed with Advanced Design System(ADS)applications.The transmitters are made to emit in the Ku-band,which covers a wide range of wavelengths.From 5–15 GHz,it is used in most current radars.The ADS suite is used to create the simulation design. 展开更多
关键词 Optimized neural network particle swarm optimization patch antenna C-BAND return losses
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部