Alumina coating was formed on AA7075 aluminum alloy by micro arc oxidation(MAO) method and its corrosion and stress corrosion cracking(SCC) behaviors were examined in 3.5%(mass fraction) NaCl solution.Electroche...Alumina coating was formed on AA7075 aluminum alloy by micro arc oxidation(MAO) method and its corrosion and stress corrosion cracking(SCC) behaviors were examined in 3.5%(mass fraction) NaCl solution.Electrochemical impedance spectroscopy(EIS) was used to evaluate the degradation of the coating as a function of immersion time and was modeled with appropriate equivalent circuits.Constant load stress corrosion cracking(SCC) results followed by post-test metallographic observations demonstrated the usefulness of MAO coating to avoid the premature failure of the alloy due to severe localized corrosion initiated by Cu-and Fe-rich intermetallic phases.展开更多
We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carried out over Ni on different types of supports namely SiO2, hydroxyapatite, SBA-15, and USY Zeolites. The oxidation o...We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carried out over Ni on different types of supports namely SiO2, hydroxyapatite, SBA-15, and USY Zeolites. The oxidation of ethylbenzene activities was measured in a round bottom flask immersed in oil bath at known reaction temperature. The physicochemical characteristics of the catalysts were examined by BET surface area, XRD, FT-IR and the oxidation activities were correlated with the acidities of the catalysts obtained by TPD of NH3. It was observed that both hydroxyapatite and USY (13% Na2O) supported Ni catalysts displayed higher ethylbenzene conversion and 80% selectivity towards acetophenone.展开更多
The general corrosion and environmental cracking resistances of Al-Cu-Li alloy AA2195 were investigated in 3.5% NaCl environment and compared with those of another high strength alloy AA2219. The general corrosion re...The general corrosion and environmental cracking resistances of Al-Cu-Li alloy AA2195 were investigated in 3.5% NaCl environment and compared with those of another high strength alloy AA2219. The general corrosion resistance of these alloys was examined using immersion corrosion and potentiodynamic polarization tests, while the stress corrosion cracking (SCC) resistance was evaluated by slow strain rate test (SSRT) method. The tested samples were further characterized by SEM-EDS and optical profilometry to study the change in corrosion morphology, elemental content and depth of corrosion attack. The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of the alloys. The results indicated that the corrosion resistance of AA2195 alloy was better than that of AA2219 alloy as it exhibited lower corrosion rate, along with lower pit depth and density. However, the SCC index (εNaCl/εair) measured was greater than 0.90, indicating good environmental cracking resistance of both the alloys. Detailed fractography of the failed samples under SEM?EDS, in general, revealed a typical ductile cracking morphology for both the alloys.展开更多
文摘Alumina coating was formed on AA7075 aluminum alloy by micro arc oxidation(MAO) method and its corrosion and stress corrosion cracking(SCC) behaviors were examined in 3.5%(mass fraction) NaCl solution.Electrochemical impedance spectroscopy(EIS) was used to evaluate the degradation of the coating as a function of immersion time and was modeled with appropriate equivalent circuits.Constant load stress corrosion cracking(SCC) results followed by post-test metallographic observations demonstrated the usefulness of MAO coating to avoid the premature failure of the alloy due to severe localized corrosion initiated by Cu-and Fe-rich intermetallic phases.
文摘We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carried out over Ni on different types of supports namely SiO2, hydroxyapatite, SBA-15, and USY Zeolites. The oxidation of ethylbenzene activities was measured in a round bottom flask immersed in oil bath at known reaction temperature. The physicochemical characteristics of the catalysts were examined by BET surface area, XRD, FT-IR and the oxidation activities were correlated with the acidities of the catalysts obtained by TPD of NH3. It was observed that both hydroxyapatite and USY (13% Na2O) supported Ni catalysts displayed higher ethylbenzene conversion and 80% selectivity towards acetophenone.
文摘The general corrosion and environmental cracking resistances of Al-Cu-Li alloy AA2195 were investigated in 3.5% NaCl environment and compared with those of another high strength alloy AA2219. The general corrosion resistance of these alloys was examined using immersion corrosion and potentiodynamic polarization tests, while the stress corrosion cracking (SCC) resistance was evaluated by slow strain rate test (SSRT) method. The tested samples were further characterized by SEM-EDS and optical profilometry to study the change in corrosion morphology, elemental content and depth of corrosion attack. The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of the alloys. The results indicated that the corrosion resistance of AA2195 alloy was better than that of AA2219 alloy as it exhibited lower corrosion rate, along with lower pit depth and density. However, the SCC index (εNaCl/εair) measured was greater than 0.90, indicating good environmental cracking resistance of both the alloys. Detailed fractography of the failed samples under SEM?EDS, in general, revealed a typical ductile cracking morphology for both the alloys.